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For more than a decade, the high threshold dual process (HTDP) model has served as a guide for studying
the functional neuroanatomy of recognition memory. The HTDP model's utility has been that it provides
quantitative estimates of recollection and familiarity, two processes thought to support recognition
ability. Important support for the model has been the observation that it fits experimental data well. The
continuous dual process (CDP) model also fits experimental data well. However, this model does not
provide quantitative estimates of recollection and familiarity, making it less immediately useful for
illuminating the functional neuroanatomy of recognition memory. These two models are incompatible
and cannot both be correct, and an alternative method of model comparison is needed. We tested for
systematic errors in each model's ability to fit recognition memory data from four independent data sets
from three different laboratories. Across participants and across data sets, the HTDP model (but not the
CDP model) exhibited systematic error. In addition, the pattern of errors exhibited by the HTDP model
was predicted by the CDP model. We conclude that the CDP model provides a better account of

recognition memory than the HTDP model.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Dual-process theorists hold that recognition memory depends
on two components: familiarity and recollection. Familiarity
involves knowing only that an item is old or new, and recollection
involves accessing specific details about the episode in which the
item was encountered. The relative contribution of these two
processes to individual recognition decisions is debated. On one
hand, the recognition decision for a particular item may be based
on one process or the other, varying from one decision to the next.
On the other, the recognition decision for a particular item may be
based on both familiarity and recollection. These possibilities are
formalized in two models that have been used to characterize
recognition memory function, the high-threshold dual-process
model (HTDP; Yonelinas, 1994; Yonelinas, 1999) and the contin-
uous dual-process model (CDP; Wixted & Mickes, 2010). In many
cases, the CDP model is mathematically equivalent to the single
process unequal variance signal detection (UVSD) model (Wixted
& Mickes, 2010). However, because of the large body of evidence
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indicating the existence of separate processes in recognition
memory (Diana, Reder, Arndt, & Park, 2006), we focus on the dual
process interpretation of the UVSD model (namely, the CDP
model).

The HTDP model provides quantitative estimates of familiarity
and recollection from confidence ratings made on a standard old/
new recognition task, but the CDP model holds that recollection
and familiarity cannot be disentangled on the basis of old/new
recognition decisions alone. The HTDP model's ability to quantify
recollection and familiarity may explain the notable role it has
played in guiding investigations of the neural basis of recognition
memory. However, it is important to consider that the HTDP
model's ability to make these estimates and the CDP model's
corresponding inability are derived from the assumptions made by
the two models about recognition. If the assumptions that a model
makes about recognition memory are accurate, then, when it is fit
to recognition data, the only source of error in the fit should be
randomly distributed noise. However, if the assumptions that a
model makes about recognition memory are inaccurate, then
errors in the model's ability to fit data are likely to be systematic
(even if the model provides a good fit to the data). Here, we
investigate whether the HTDP model or the CDP model produces
systematic errors, that is, deviations from what is observed in
recognition memory data.
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The assumptions of the HTDP model differ from the CDP model
in two important respects. First, the HTDP model assumes that
recollection is a high-threshold process (Macmillan & Creelman,
2005; Yonelinas, 1994; Yonelinas, 1999), such that recollection is
either successful (yielding recognition decisions made with high
confidence and high accuracy) or unsuccessful. The CDP model
(Wixted, 2007; Wixted & Mickes, 2010), by contrast, assumes that
recollection can vary continuously (yielding recognition decisions
made with a wide range of confidence and accuracy).

A second difference between the two models follows from the
HTDP model's assumption that recollection is a high-threshold
process. The HTDP model predicts that if recollection is successful,
then familiarity does not contribute to the recognition decision
because recollection provides unambiguous evidence of a previous
encounter. If recollection is unsuccessful, then the recognition
decision is based wholly on the strength of the familiarity signal.
By contrast, the CDP model posits that familiarity and recollection
are combined during recognition memory decision-making. This
feature of the model arises from the proposition that both
recollection and familiarity are assumed to be imperfect contin-
uous processes, and combining them can yield a more diagnostic
memory signal than relying on either one alone.

A number of studies have compared the CDP model to the
HTDP model using receiver operating characteristic (ROC) analysis,
a technique based on confidence ratings that allows model-based
inferences about the nature of the underlying memory-strength
distributions across items (Macmillan & Creelman, 2005). The
validity of model-based inferences is typically assessed in ROC
analysis by comparing a model's fit to the observed data in order
to calculate a goodness-of-fit statistic. Although there have been
many studies (e.g. Glanzer, Kim, Hilford, & Adams 1999; Glanzer,
Hilford, & Kim, 2004; Healy, Light, & Chung, 2005; Heathcote,
2003; Kelley & Wixted, 2001; Slotnick & Dodson, 2005; Yonelinas,
1994), the evidence based on goodness-of-fit statistics alone has
been mixed, with some studies favoring the HTDP model and
some favoring the CDP model. The CDP model often provides the
better fit to typical recognition memory data (e.g. Slotnick &
Dodson, 2005; for review see Wixted, 2007), but some results
are better accounted for by the HTDP model (e.g. Howard,
Bessette-Symons, Zhang, & Hoyer, 2006; Yonelinas, 1999).

One reason for these inconclusive results may be that both
models are able to fit recognition memory data quite well. Indeed,
an earlier analysis of a typical data set found that the HTDP model
accounted for 99.91% of the variance, and the CDP model
accounted for 99.97% of the variance (Glanzer, et al, 1999;
Yonelinas, 1999b). Similarly, across four data sets analyzed below,
which involved 65 participants, the average percent of variance
accounted for was above 90% for both models (HTDP=91%,
CDP=96%). The fact that both models fit the data well may
explain why both are given credence despite their fundamental
differences.

The assumption is often made that models that fit data well are
good models. However, this assumption is not necessarily valid
(Roberts & Pashler, 2000). Accordingly, model comparisons based
on goodness-of-fit may have difficulty deciding which model is
best. An alternative, more promising, way to distinguish between
the merits of the two models is to first ask whether the models
generate systematic errors in their ability to account for recogni-
tion memory data. Second, if a model generates systematic errors,
then one can ask whether the other model, in fact, predicts these
errors.

Fig. 1 illustrates the essential differences between the two
models. The models make the same assumptions about the
distractor distribution (i.e., the distribution of memory strength
signals generated by the foils), but they differ in their assumptions
about the target distribution (i.e., the distribution of memory
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Fig. 1. Schematic representation of the theoretical distributions of items in
memory according to both the high threshold dual process model (HTDP; dotted
lines) and the continuous dual process model (CDP; dashed lines). The two models
share a distribution for new items (distractors; solid line). The HTDP model has
separate distributions for study items supported by recollection and familiarity. The
CDP model has a single distribution for study items. The X-axis represents the
strength of memory, proceeding from low memory strength at the left to high
memory strength at the right. Areas a, b, and ¢ show areas of non-overlap between
the two models where the predicted data differ systematically.

strength signals generated by the targets). The HTDP model has
two target distributions, a high-threshold distribution for items
that are recollected (these targets have essentially infinite memory
strength) and a separate continuous distribution for items judged
on the basis of familiarity. The familiarity and distractor distribu-
tions are assumed to have equal variance. In contrast, the CDP
model has a single target distribution, and that distribution has
greater variance than the distractor distribution.

Moving from low memory strength (Fig. 1; left) to high
memory strength (Fig. 1; right), visual inspection of the models’
target distributions reveals areas where the models do not overlap
and where the predicted data differ systematically. At low levels of
memory strength (area (a)), the HTDP model predicts a lower
frequency of target items than does the CDP model. At medium
levels of memory strength (b), the HTDP model predicts a higher
frequency of target items than does the CDP model. At moderately
high levels of memory strength (c), the HTDP model predicts a
lower frequency of target items than does the CDP model. Lastly, at
the highest levels of memory strength (represented in the HTDP
model by the distribution of recollection responses and in the CDP
model by the rightmost tail of the target distribution), the HTDP
model predicts a higher frequency of target items than does the
CDP model. Thus, if the assumptions of the HTDP model are
correct, then one might expect to find that the best-fitting CDP
model predicts too many low-confidence responses to targets, too
few medium confidence responses to targets, and too many moder-
ately high confidence ratings to targets. If, instead, the assumptions
of the CDP model are correct, then the best-fitting HTDP model
should exhibit the opposite pattern of systematic error.

Note that Fig. 1 is simply an example illustrating systematic
errors that might be observed for a particular set of model
parameter values. We chose these parameter values because they
correspond to values typically observed in recognition memory
experiments. Still, the actual systematic errors could differ across
individuals depending on the model parameters that characterize
the performance of each individual.

To differentiate between the HTDP and CDP models, we first
examined the ability of each model to fit recognition memory data
in four data sets from three different laboratories and then
investigated whether any systematic errors were evident in their
fits to target items. Lure items were also examined but yielded no
systematic errors for either model. We then tested whether the
systematic errors generated by one model (if any) could be
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predicted by the other model. We performed this analysis at the
individual level (i.e., fitting the two models to each individual's data
separately, and generating predictions of systematic error based on
each participant's performance individually). We found that only
the HTDP model generated systematic errors in its fit to target
items. Moreover these errors were predicted by the CDP model. By
contrast, the CDP model did not yield systematic errors, and the
HTDP model predicted errors for the CDP model that were not
observed. In other words, the predictions of the CDP model were
confirmed (validating its assumptions about recognition memory),
whereas the predictions of the HTDP model were disconfirmed
(invalidating its assumptions about recognition memory). This
pattern was observed even though both models fit the data well
(as is usually true), underscoring the fact that a good fit does not
necessarily imply a valid model (Roberts & Pashler, 2000).

2. Methods
2.1. Data

Four data sets were used involving 65 participants, 32 of whom were tested
under two different conditions. All data sets were collected using similar word
recognition memory tests. Participants were asked in each case to rate their
confidence that a word had been previously presented from 1 (sure new) to 6 (sure
old). These data sets were selected because they are based on sufficient data to
allow for individual model fitting and because the methods were comparable. The
data represent results from a laboratory that has generally supported the CDP
model (Dede, Wixted, Hopkins, & Squire, 2013), a laboratory that has generally
supported the HTDP model (Koen & Yonelinas, 2010), and a neutral laboratory (Van
Zandt, 2000).

Dede et al. (2013). Participants were five memory-impaired patients with
bilateral lesions limited to the hippocampus. Eleven age and education-matched
controls were also tested. Participants were given three tests of recognition
memory. In each test, participants were presented with 50 study words and asked
to make pleasantness ratings. After a 3-5 min delay, participants were presented
with 100 test words (50 new words and 50 old words). An additional group of
seven age and education-matched controls were tested using an identical proce-
dure but with the delay interval between study and test extended to one week.

Koen and Yonelinas (2010). Thirty-two undergraduate participants were pre-
sented with a mixed list of 80 words presented for 4 s and 80 words presented for
1 s. Immediately afterwards, participants were presented with 320 test words (160
old words and 160 new words). The data were analyzed as two separate sets, one
based on the 80 study words presented for 4 s (plus 160 new words), and the other
based on the 80 study words presented for 1 s (plus 160 new words).

Van Zandt (2000). Ten undergraduate participants were presented with 32
study words. Immediately afterwards, participants were presented with 20 of the
study words and 20 new words. This procedure was repeated a total of 20 times,
using different lists.

2.2. Analysis of systematic error

First, we fit the HTDP and CDP models to the data sets from the three
laboratories to determine whether either model yielded a pattern of systematic
error. All data were fit with both the HTDP and CDP models at the individual subject
level using maximum likelihood estimation. These fits yielded predictions of the
frequency with which a participant used each confidence-level response (1-6) for
the study items. The observed frequencies of different confidence ratings to target
items were then subtracted from the corresponding predicted frequencies derived
from the model fits to calculate errors in each model's predictions. If errors for a
particular confidence rating are random and non-systematic, then they should have
a mean of zero across participants. If errors are systematic, then they should deviate
systematically from zero. To test for such systematic error, a series of one-sample t-
tests determined whether there was significant non-zero error at each confidence
level within each of the four data sets. Errors were deemed systematic if they were
identified as significant in all four data sets (Dede et al., 2013; Koen & Yonelinas,
2010, 4-s condition; Koen & Yonelinas, 2010, 1-s condition; Van Zandt, 2000).

2.3. Individual prediction analysis

In this analysis, we created predictions of model error that were based on each
participant's performance. This analysis was computationally similar to the para-
metric bootstrap analysis used by Wagenmakers, Ratcliff, Gomez, and Iverson
(2004) to assess model mimicry. To understand this analysis conceptually, consider
the systematic errors that are produced when the HTDP model is fit to real data. If

the same systematic errors are generated when the HTDP model is fit to data
generated by the CDP model in simulation, then the inference can be made that the
CDP model, having accurately predicted the HTDP model's error, is likely to
accurately reflect the phenomenon that produced the real data. Six steps were
applied to each participant individually. Step 1: 500 non-parametric bootstrap
samples were taken. Step 2: these samples were fit with both the HTDP and CDP
models using maximum likelihood estimation. The average error generated in
these fits across the 500 bootstrap samples was used to measure systematic error.
Step 3: using the parameters obtained in Step 2, simulated data were created by
both the HTDP and CDP model simulators described in Section A.1. This step
yielded 500 simulated data sets for each model. Step 4: the HTDP model was fit to
the CDP model simulation data, and the CDP model was fit to the HTDP model
simulation data. Step 5: the fits from Step 4 were used to derive an error prediction
at each confidence level for each model. The error prediction was the mean error
value for each confidence rating, as predicted by each model individually across the
500 simulated data sets. Step 6: the predicted error values for each model's fit were
correlated with the observed error values in each individual's data. This was done
in two ways. The predicted error values were correlated with the observed error
values found when each model was directly fit to the original data and with the
mean error values found when each model was fit to the non-parametric boot-
strapped data (Step 2). The bootstrapping procedure was used to obtain a pattern of
observed systematic error that was more robust to noise. The histograms of the
correlation values across participants were plotted for visual inspection, and the
correlation distribution produced by each model was compared to 0 using one-
sample t-tests (see Section A.2 for a detailed example based on an individual
participant and Section A.3 for further analyses of model flexibility).

3. Results

The first objective was to identify systematic errors in the fits of
each model to recognition memory data. Accordingly, we fit both
models to four sets of data from three studies of recognition
memory (Dede et al,, 2013; Koen & Yonelinas, 2010; Van Zandyt,
2000). Fits were performed using maximum likelihood estimation
on an individual participant basis (see Section 2). For the data from
Dede et al. (2013), there were no significant differences in the
error patterns across groups, so data from the different groups
were combined (patients, controls tested with no delay, controls
tested with a one-week delay).

3.1. The HTDP model but not the CDP model generated systematic
error

Fig. 2a shows the pattern of error when the recognition
memory data were fit with the HTDP model. Fig. 2b shows the
pattern of error when the same data were fit with the CDP model.
The four sets of data indicate that the HTDP model consistently
underestimated the frequency of low memory strength responses
to target items (i.e., confidence ratings of 1 on the 6-point scale),
consistently overestimated the frequency of medium-strength
responses to target items (confidence ratings of 3), and consis-
tently underestimated the frequency of high-strength responses to
target items (confidence ratings of 5) (Fig. 2a). There was no trend
towards systematic error in the fit of the CDP model, and no
instance where all four data sets identified a significant error
(Fig. 2b).

The systematic errors generated by the HTDP model suggest
that the HTDP model did not accurately describe how responses of
different memory strength would be distributed in tests of
recognition memory. Note that the errors generated by the HTDP
model were the same errors predicted from Fig. 1, as outlined in
Section 1. That is, the HTDP model generated the errors indicated
by areas a, b, and c in Fig. 1.

3.2. The CDP model predicted the errors that were generated by the
HTDP model at an individual level

Before presenting the results of this analysis, it is useful to
explain the logic of our technique. Consider models A and B. When
model A generates simulated data and model B is fit to that
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Fig. 2. Errors in the fits of the high threshold dual process model (HTDP) and the
continuous dual process (CDP) to study items from four sets of data. (a) The HTDP
model consistently underestimated the frequency of 1 and 5 responses and
consistently overestimated the frequency of 3 responses. (b) For the CDP model
there was no instance where all four data sets identified a systematic error. Error
bars indicate SEM. * denotes p < .05 in single sample t-tests compared to zero.

simulated data, there will be a certain pattern of systematic errors
in the fit of model B. This pattern will reflect the differences
between models A and B and can be thought of as the pattern of
predicted errors in the fit of model B. Most importantly, the
predicted error pattern in the fit of model B is conditional on
model A producing the data. Turning to the fitting of real data, it is
unknown which model best approximates the phenomenon under
study, but if the predicted pattern of error in the fit of model B is
similar for real data and for data simulated by model A then model
A likely reflects the phenomenon that produced the real data. This
entire process and logic can be reversed to provide predictions of
the errors in the fit of model A when model B produces the data.

For each participant, we correlated the pattern of error that was
generated when each model was fit to the data with the pattern of
error that was generated when each model was fit to data
simulated by the other model. We also correlated the average
pattern of error that was generated when each model was fit to a
set of 500 non-parametric bootstrapped samples with the pattern
of error that was generated when each model was fit to data
simulated by the other model. This analysis resulted in two sets
(one based on fits to raw data and one based on fits to boot-
strapped data) of 97 correlations for each model (65 participants,
32 of whom were tested in two different conditions), based on the
frequency of ratings at each confidence level (1-6). Fig. 3a shows
the distribution of correlations (one correlation for each partici-
pant) between the errors generated by fitting the HTDP model to
the data and the CDP model's prediction of errors. The average
correlation was .44, a value greater than zero (£(96)=9.5, p <.001).
When this analysis was based on bootstrapped error patterns,
which should be less susceptible to noise, the average correlation
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Fig. 3. Distribution of correlation values (one value for each of 97 participants)
between the errors generated by fitting one model to the data and the errors
predicted by the other model. (a) The CDP model's predictions of error are well
correlated with the errors generated by the HTDP model. (b) The HTDP model's
predictions of error are not well correlated with the errors generated by the
CDP model.

value increased to .54 (£(96)=12.9, p <.001). Thus, the CDP model
predicted the (systematic) errors made by the HTDP model when
the HTDP model was fit to individual data. Fig. 3b shows the
corresponding distribution of correlations between the errors
generated by fitting the CDP model to the data and the HTDP
model's prediction of errors. The average correlation was .02,
which was not different from zero (t(96)=.3, p=.75). When this
analysis was based on bootstrapped error patterns, the average
correlation increased to .08 (t(96)=1.2, p=.22), a smaller increase
than was seen for the CDP model. Thus, the HTDP model did not
predict the (nonsystematic) errors made by the CDP model when
the CDP model was fit to individual data.

4. Discussion

Taking a novel approach to an old problem, we have found
support for the CDP model and evidence against the HTDP model.
In our first analysis (Fig. 2), the HTDP model exhibited systematic
errors in its ability to predict the frequency of different confidence
responses to target items (despite providing a good fit to the data,
which is often taken as evidence of its validity). If the HTDP model
accurately accounted for recognition memory, then errors in the
predictions made by the best-fitting version of the model for each
level of confidence should have been randomly distributed.
Instead, the errors were systematic. These systematic errors imply
that the HTDP model's assumptions about recognition memory are
inaccurate.

By contrast, the CDP model did not exhibit systematic errors.
Yet the absence of systematic error alone does not confirm the
accuracy of the assumptions about recognition memory that
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underlie the CDP model. Accordingly, we next asked whether the
CDP model could predict the errors generated by the HTDP model.
This analysis was performed at the individual level and demon-
strated that the CDP model not only fits the data without
systematic error but also predicts the systematic errors evident
in the fits provided by the HTDP model (Fig. 3a). A second analysis
(Fig. 3B) demonstrated that the HTDP model did not predict the
(nonsystematic) errors evident in the fits provided by the CDP
model. Taken together, these results suggest that the CDP model
accurately accounts for recognition memory decision making and
that the HTDP model does not.

There were two potential concerns about our analyses that are
worth drawing attention to. First, in order to generate error
predictions, the CDP model was always fit to data simulated by
the HTDP model, and the HTDP model was always fit to data
simulated by the CDP model. Our assumption was that neither
model would predict errors in its own fit to the data (because
those errors would be random). We tested this assumption by
fitting the CDP model to data simulated by the CDP model and by
fitting HTDP model to data simulated by the HTDP model. This
analysis yielded no systematic errors, confirming our assumption.

Second, the CDP model is known to be slightly more flexible
than the HTDP model, and it was unknown what effect this would
have on our analyses of systematic error. We addressed this issue
in an analysis presented in Section A.3 and found that model
flexibility did not play a role in our results.

Within the discipline of cognitive psychology, reservations
about the validity of the HTDP model have been expressed by
many different researchers (e.g. Glanzer et al.,, 1999; Heathcote,
2003; Healy et al.,, 2005; Qin, Raye, Johson, & Mitchell, 2001; Qin,
Raye, Johnson, & Mitchell, 2001; Rotello, Macmillan, Reeder, &
Wong, 2005; Slotnick & Dodson, 2005; Starns, Rotello, & Ratcliff,
2012; Starns, Ratcliff, & McKoon, 2012). Thus, it is of interest to ask
why the HTDP model has nevertheless held favor in guiding
research into the neural substrates of recognition memory. An
important consideration is that both the HTDP and CDP models
virtually always fit experimental data well. Further, investigators
often interpret a good fit to imply that a model is valid even
though that is not a safe assumption (Roberts & Pashler, 2000). But
if one does assume that both models are valid because they fit the
data well, there is a choice to be made. On the one hand, the CDP
model does not provide a simple way to differentiate between
familiarity and recollection on the basis of old/new decisions
alone. On the other hand, the HTDP model does. Assuming that
a good fit implies a good model, and if the goal is to identify neural
substrates of recollection and familiarity, the choice is straightfor-
ward: the HTDP model is the one to use.

Yet, considering the fundamentally different ideas about recol-
lection inherent in the HTDP and CDP models, it should be clear
that both models cannot be correct. The analyses presented here
demonstrate that the CDP model is viable, but that the HTDP
model is not (despite the fact that the HTDP model fits the data
well). In light of the evidence presented here against the HTDP
model, it would make sense to use the CDP model to guide studies
of recognition memory (at least when words are used as stimuli, as
they often are). It would also make sense to reconsider conclusions
about the neuroanatomy of recognition memory that depend on
the validity of the HTDP model.

Studies of recognition memory have commonly used fMRI and
lesion studies to identify structures important for recollection and
familiarity. Many of these studies have relied upon the assumptions
of the HTDP model for interpreting the data (e.g. Aggleton et al,,
2005; Ranganath et al., 2004; Yonelinas et al., 2002; Yonelinas,
Otten, Shaw, & Rugg, 2005; for review see Eichenbaum, Yonelinas, &
Ranganath, 2007). These studies have led to the idea that the
hippocampus is important for recollection and that the surrounding

medial temporal lobe (MTL) cortices are important for familiarity.
To reach this conclusion, researchers have had to separate test trials
based on recollection from test trials based on familiarity (e.g., in
order to compare hippocampal activity for recollection-based vs.
familiarity-based decisions), and the assumptions of the HTDP
model have been relied upon for this purpose. Studies using the
Remember-Know procedure, source memory procedures, and/or
confidence rating procedures have all been implicitly or explicitly
guided by the HTDP view of recollection. However, if the CDP model
is correct (and the HTDP model is incorrect), then all of these
studies share a common flaw in that trials assumed to differ only in
whether recollection is present or absent also differ in memory
strength (strong versus weak; Slotnick & Dodson, 2005; Wixted,
2007; Squire, Wixted, & Clark, 2007).

Unlike the HTDP model, the CDP model does not guide inquiry
into the neural basis of recognition memory by providing quanti-
tative estimates of recollection and familiarity. Instead, it suggests
novel experimental designs that can be used to test whether (for
example) the hippocampus plays a role in recollection and
familiarity. A key idea suggested by this model is that it is
important to control for memory strength because decisions
thought to be based on recollection (e.g., Remember judgments)
are typically made with higher confidence and higher accuracy
than decisions thought to be based on familiarity (e.g., Know
judgments). A difference in memory is not the essence of the
theoretical difference between recollection and familiarity. Indeed,
recollection can be weak and familiarity can be strong (Ingram,
Mickes, & Wixted, 2012). Thus, memory strength is an experi-
mental confound that should be controlled when comparing the
two processes. For example, in one study that controlled for
memory strength, the hippocampus was active when responses
were based on recollection as well as when responses were based
on familiarity (Smith, Wixted, & Squire, 2011). This result does not
mean that the hippocampus and surrounding MTL structures
provide only an undifferentiated signal of strength. Despite not
being informed by the distinction between recollection and
familiarity, the different structures of the MTL likely play different
roles (Wixted & Squire, 2011a,b,c). Indeed, a recent study used
state-trace analysis, combined with intracranial depth electrode
recording, to demonstrate that the hippocampus and perirhinal
cortex perform fundamentally different computations (Staresina,
Fell, Dunn, Axmacher, & Henson, 2013). For further discussion
concerning this issue, see Diana and Ranganath (2011), Montaldi
and Mayes (2011) and Wixted and Squire (2011a,b,c).

In summary, we have found that the HTDP model does not
accurately characterize recognition memory. Although the HTDP
model can fit recognition memory data reasonably well, the
relatively small errors it makes are systematic in nature. By
contrast, the CDP model did not make systematic errors and also
accurately predicted the systematic errors generated by the HTDP
model. These findings suggest that the assumptions about recol-
lection and familiarity that are underlie the CDP model (e.g., the
assumption that recollection is a continuous process) are more
accurate than the assumptions that underlie the HTDP model (i.e.,
e.g., the assumption that recollection is a threshold process). The
key implication of these results is that the search for the neuroa-
natomical basis of recollection and familiarity should not be
wedded to theoretical assumptions that are inconsistent with
the empirical evidence.

Appendix A. Supporting information
Supplementary data associated with this article can be found in

the online version at http://dx.doi.org/10.1016/j.neuropsychologia.
2013.10.012.
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Appendix
A.1 Model Simulators

Simulator functions were written in R to create data for both the CDP and HTDP
models. Email the first author for these functions if interested.

For the CDP model, a CDP_simulator(d, s, criteria) function was written. The
function involved seven values: d, s, and a set of five criteria. d corresponded to the CDP
d parameter and s corresponded to the CDP slope parameter. The CDP_simulator
function sampled 150 times from a distribution with mean equal to d and standard
deviation equal to 1/slope. These samples were stored as study items. Next the simulator
sampled 150 times from a distribution with mean equal to zero and standard deviation
equal to one. These samples were stored as new items. Using the five criteria points, the
study items and the new items were assigned confidence ratings on a 1-6 scale (6
indicated that the item was very likely to be a study item and 1 indicated that the item
was very likely to be a new item).

A similar HTDP_simulator(f, R, criteria) function was written for the HTDP
model. The f value of this function corresponded to the familiarity parameter of the
HTDP model, and R corresponded to the recollection parameter. Again, 150 study items
and 150 new items were assembled. For each study item, a random number was
generated between 0 and 1. If the random number was less than or equal to the
recollection parameter, then the item was randomly assigned a value from a distribution
having a mean equal to f plus 6 and a standard deviation equal to 1. In practice, this
procedure resulted in recollection-based decisions always being assigned a confidence

rating of 6. If the random number was greater than the recollection parameter, then the



sample was assigned a value from a distribution having a mean equal to f and standard
deviation equal to 1. Then the samples of study items and new items were assigned

confidence ratings in the same way as was done for the CDP model.

A.2 Individual Prediction Analysis

The goal of the individual prediction analysis (section 2.3) was to create
predictions of model error that were tailored to the parameter space of each individual
participant and to compare those predictions to each individual’s observed error pattern.
Here we present a detailed description of the analysis by summarizing the data analysis

and illustrating the results for a representative participant.

Step 1: 500 non-parametric bootstrap samples were taken of the data. For each bootstrap
sample, the original data were placed into two vectors of confidence ratings, one for
studied items and one for distractors (as in Table A.1). Next, values were randomly
drawn with replacement from each vector until new studied-item and distractor vectors
were created containing observations that were equal in number to the number of
observations in the original data. This process was repeated 500 times, which resulted in
a list of 500 non-parametric bootstrap samples (i.e., 500 hypothetical data sets for a single
participant) with each formatted in the same way as the original data. In the example
here, this procedure resulted in a mean percent correct of .73 across bootstrap samples

with a standard deviation of .01. The original data had a percent correct of .73.



Step 2: Each of the 500 non-parametric bootstrap samples was fit with both the CDP
model and the HTDP model using maximum likelihood estimation. There were seven
free parameters of each model. Five of these were criterion parameters, which were
placed along the continuous strength of memory axis (Figure 1). The remaining two
parameters were specific to each model. The CDP model’s parameters were d and slope.
d represented the distance between the mean of the studied item distribution and the mean
of the distractor distribution standardized by the standard deviation of the distractor
distribution. Slope represented the ratio of the standard deviation of the distractor
distribution to the standard deviation of the studied item distribution. The HTDP model’s
parameters were f and R. f represented the distance between the mean of the familiarity
distribution and the mean of the distractor distribution standardized by the standard
deviation of the distractor distribution, which was defined to be equal to the standard
deviation of the studied item distribution. R represented the probability that any
individual studied item would be recollected. See Table A.2 for the results of this step in
the present example. Table A.2 shows the parameter estimates for the two key parameters
of each model when fit to the participant's data (first line) as well as the average
parameter estimates for the two key parameters of each model when fit to the 500
bootstrapped samples drawn from that participant's data. Obviously, the parameter
estimates from the real data and the average parameter estimates bootstrapped samples
are the same. The average error pattern across the 500 bootstrapped samples was
calculated for each model. This was used as a measure of the observed error that was
more robust to noise than the observed error pattern generated when the models were fit

to the raw data.



Step 3: Using the 500 sets of parameter estimates from the bootstrapped samples obtained
in Step 2, 500 simulated data sets were created by both the HTDP and CDP model
simulators described in section A.1. This step yielded 500 simulated data sets per
participant for each model. In the present example the 500 data sets simulated by the
CDP model had a percent correct of .73 (SD = .03), and those simulated by the HTDP
model had a percent correct of .78 (SD =.02). Note that we could have produced one
simulated HTDP data set and one simulated CDP data set for a given participant using
the parameters from the fits to the real data (e.g., first line in Table A.1) instead of
creating 500 simulated data sets for each model (using parameter estimates from the fits
to the bootstrapped samples). The reason for computing 500 simulated data sets for each
model is that this procedure more accurately characterizes the predicted performance of a
particular participant because the results do not rely only on the data pattern produced on

the one occasion the participant was tested.

Step 4. At this point, for each participant, we had 500 simulated data sets known to have
been produced by the CDP model and 500 simulated data sets known to have been
produced by the HTDP model. Next, for each participant, the HTDP model was fit to the
500 data sets simulated by the CDP model, and the CDP model was fit to the 500 data
sets simulated by the HTDP model. That is, the wrong model was used to fit each data set
to determine what systematic errors should be observed according to each model when

the other (wrong) model is fit to the data. These fits were used to generate patterns of



systematic error by subtracting the observed frequencies of each confidence response

from the corresponding model predictions of response frequency.

Step 5. The fits from Step 4 were used to derive an error prediction at each confidence
level for each model. The error prediction was the mean error value for each confidence
rating, as predicted by each model individually across the 500 simulated data sets. Figure
A.1 shows the error predictions of the two models (solid bars) and the observed error (as

measured using bootstrap; open bars) in each model for the present example.

Step 6. The predicted error values for each model’s fit were correlated with the observed
error values (based both on fits to raw data and to bootstrapped data). In the present
example the correlation between the CDP model’s predictions and the HTDP model’s
error was .93 (.94 bootstrapped), and the correlation between the HTDP model’s
predictions and the CDP model’s error was .01 (.01 bootstrapped). The histograms of the
correlation values across all participants were plotted for visual inspection (Figure 3), and
the correlation distribution produced by each model was compared to 0 using one-sample

t-tests (see section 3.2).

A.3 The Effect of Model Flexibility

In our analyses, and in many others, it has been shown that the CDP model will
generally fit recognition memory data better than the HTDP model. This advantage of the
CDP model might occur because the CDP model is slightly more flexible than the HTDP
model, or perhaps because the CDP model is a more accurate representation of the

underlying phenomena of recognition memory. The problem of differentiating between



truth and flexibility was one of the motivating reasons for the present analysis of
systematic error. Note first, however, that no matter how little total error there is in a
model’s fit, an accurate model should never show systematicity in its error. By this logic,
the HTDP model was proven incorrect in our initial analysis of systematic error (Section
3.1).

The next step of our analysis was to show that the CDP model is correct because
it has the ability to predict the systematic errors of the HTDP model. Here, model
flexibility may play a role. If a model is flexible, then to the extent that it is capable of
mimicking the original data it will accurately predict the systematic errors of another
model’s fit to the original data. Thus, it was necessary to compare the HTDP and CDP
models under conditions in which they mimicked the data equally well. Goodness-of-fit
is effectively a measure of the extent to which a model can mimic the data to which it is
fit. Thus, participants were eliminated one at a time from the individual prediction
analysis (Sections 2.4, 3.3, and A.2) such that the participant with the greatest CDP
model over HTDP model goodness-of-fit advantage was always eliminated. This process
was repeated until, for the remaining participants, the two models fit equally well.
Goodness-of-fit was measured with the log likelihood value for each model. After the
elimination of each participant, the average log likelihood of each model was recalculated
in the remaining group as were the average prediction correlation values for both the
HTDP and CDP models. As shown in Figure A.2, the average log likelihood of the
HTDP model was equal to the average log likelihood of the CDP model after 27/97
participants. That is, after 27 participants had been eliminated from the analysis, the two

models were able to mimic the data for the remaining participants equally well. Thus,



model flexibility was unlikely to play a role in this subset. Despite fitting the remaining
data equally well, the CDP model still performed far better than the HTDP model at
predicting the systematic error of the competing model (rytpp=.21; rcpp=.48). The CDP
model continued to predict the errors of the HTDP model better than the HTDP model
could predict the errors of the CDP model, even as we continued to eliminate participants
who were better fit by the CDP model. It was not until 48/97 participants had been
eliminated from the analysis that the HTDP model began to predict CDP model error
better than the CDP model predicted HTDP model error.

The fact that there was such a large gap in this analysis between the point at
which the HTDP model began to fit better and the point at which the HTDP model began
to predict errors more accurately indicates that model flexibility did not influence our
results. Highly flexible models are able to mimic any data, leading to high goodness-of-
fit. This analysis eliminated the CDP model’s goodness-of-fit advantage (whether that
advantage was due to its theoretical accuracy or to its higher flexibility), and
demonstrated that the CDP model was still capable of predicting the HTDP model’s
errors. Thus, we conclude that the advantage of the CDP model over the HTDP model is
a reflection of the fact that the theoretical assumptions that underlie the CDP model
provide a closer approximation to the truth than the theoretical assumptions that underlie

the HTDP model.



Figure Captions.

Figure A.1. Predicted and observed error patterns for an individual participant. Predicted
values are based on the procedure described in sections 2.3 and A.2. A. There was a
strong correlation between the CDP model’s prediction of the HTDP model’s error and
the observed values for the HTDP model’s error. B. There was not a strong correlation
between the HTDP model’s prediction of the CDP model’s error and the observed values

for the CDP model’s error.

Figure A.2. Model prediction correlations as a function of relative model log likelihoods.
As participants with disproportionately good CDP compared to HTDP model fits were
eliminated from the analysis, the average difference in log likelihood between the two
models dropped down to zero and then become negative (indicating better average HTDP
model fit). In parallel, the CDP model’s ability to predict HTDP model error decreased
and the HTDP model’s ability to predict CDP model error increased. The cross-over
point at which the HTDP model begins to fit better than the CDP model was far before
the cross-over point at which the HTDP model began to make better predictions than the

CDP model.



Table A.1. Example data

Confidence Studied Distractor

Rating Items Items
6 185 5
5 158 38
4 173 106
3 106 131
2 110 296
1 68 224




Table A.2. Model parameters from original and bootstrapped data.

Data d slope f R

Original Data 141 .70 .92 19
Bootstrap Data  1.41(.08) .70(.04) .92(.07) .19(.02)

Note: Mean (Standard deviation)
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