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Neurocomputational models have long posited that episodic
memories in the human hippocampus are represented by sparse,
stimulus-specific neural codes. A concomitant proposal is that
when sparse-distributed neural assemblies become active, they
suppress the activity of competing neurons (neural sharpening).
We investigated episodic memory coding in the hippocampus and
amygdala by measuring single-neuron responses from 20 epilepsy
patients (12 female) undergoing intracranial monitoring while
they completed a continuous recognition memory task. In the left
hippocampus, the distribution of single-neuron activity indicated
that only a small fraction of neurons exhibited strong responding
to a given repeated word and that each repeated word elicited
strong responding in a different small fraction of neurons. This
finding reflects sparse distributed coding. The remaining large
fraction of neurons exhibited a concurrent reduction in firing rates
relative to novel words. The observed pattern accords with
longstanding predictions that have previously received scant
support from single-cell recordings from human hippocampus.
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Episodic memory affords the capacity to recollect past events
that occurred at a particular time and place (1). In humans,

episodic recollection allows for the reexperiencing of an event
through a process of mental time travel (2). The ability to encode
new episodic memories depends on the hippocampus, but it is
not clear how episodic memories are coded by the activity of
individual hippocampal neurons. We investigated the activity of
isolated hippocampal neurons in epileptic patients undergoing
intracranial monitoring while they encoded and retrieved epi-
sodic memories. Memory was tested using a continuous recogni-
tion procedure (3) in which words were presented in a continuous
stream and were sometimes repeated. Throughout the task, pa-
tients were asked to classify each word as “new” upon its first
presentation and as “old” if it was repeated. A correct old decision
in response to a repeated word is an instance of successful epi-
sodic memory (i.e., memory for the prior occurrence of the word
in the experimental context). Hippocampal lesions impair per-
formance on continuous recognition tasks for words (4).
Neurocomputational models (5–8) have long posited that

coding in the hippocampus is sparse and distributed. Thus, in-
dividual episodic memories are represented by the activity of
small and typically nonoverlapping sets of neurons. Under such a
coding scheme, activity associated with the retrieval of a specific
episodic memory would be hard to detect because only a small
proportion of hippocampal neurons would exhibit increased
firing rates. Perhaps for this reason, single-unit studies of rec-
ognition memory in humans and nonhuman primates have often
failed to detect any activity related to episodic memory in the
hippocampus (9–12). Moreover, when activity related to episodic
memory has been detected, the identified neurons responded
nonspecifically, coding whether stimuli were novel or familiar
(13–19), and leaving open the question of whether neurons can
be found that sparsely code some recently studied items and
not others.

A standard procedure for detecting stimulus-specific, single-
unit activity involves repeatedly presenting a stimulus to de-
termine if a neuron responds reliably only when that stimulus is
presented. Notably, this approach has identified neurons that
respond selectively to the presentation of a photo of a particular
person or landmark (20, 21). In studies of episodic memory, one
would expect to find not only neurons that code stable semantic
knowledge about the material being learned, but also neurons
that code aspects of the learning event itself. By definition, ep-
isodic memory involves retrieving an episode that occurred only
once, i.e., a learning event such as remembering the earlier
presentation of a word. Note that repeating a studied word not
only prompts retrieval of its prior occurrence but also creates a
new and distinct episodic memory, potentially coded by a dif-
ferent set of neurons. In that case, a neuron that responded the
first time a word was repeated might not respond to its repeti-
tion. Moreover, if a given neuron did respond to every repetition
of a word, the neuron might be responding to the word’s context-
free semantic meaning, not to the word’s episodic occurrence in
the experimental context. For these reasons, instead of searching
for neurons that respond reliably to words repeated multiple
times, we used an approach that is capable of detecting rare
spiking events that theoretically signal episodic memory in re-
sponse to words that were repeated only once.

Significance

Neurocomputational models hold that episodic memories are
represented by sparse, stimulus-specific neural codes. In tests
of episodic memory, single-unit recording studies of the human
hippocampus have found neurons that operate as general
novelty detectors or general familiarity detectors. Here, we
investigated whether neurons can be found that sparsely code
some recently studied items and not others. In the left hippo-
campus, but not the amygdala, we found that small fractions
of neurons exhibited strong responses to specific repeated
words. The remaining large fractions of neurons exhibited a
concurrent reduction in firing rates relative to novel words.
Both findings are consistent with predictions made by neuro-
computational models of how episodic memory is coded in
the hippocampus.
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Results
Behavioral Performance. Invalid trials (13.6% of all trials) were
excluded from analysis. These trials had either no responses, early
responses, or multiple keys pressed. From the remaining valid
trials, hit rates (proportions of correctly classified repeated words)
and false alarm rates (proportions of novel words mistakenly
classified as repeated) were computed for each session. These hit
and false alarm rates were used to compute a standard discrimi-
nability measure (d′). Performance measures for the 37 sessions
were computed separately for each patient (averaged across ses-
sions) and were then averaged across patients. The average false
alarm rate was 0.21. Unlike the false alarm rate, hit rates could be
computed separately by lag and showed a monotonic decline as
lag increased (hit rates = 0.88, 0.80, 0.76, 0.75, 0.71, and 0.70 for
the six lags, respectively). The corresponding d′ scores exhibited
the typical power law of forgetting (Fig. 1).

Analysis of Single-Unit Activity in the Hippocampus and Amygdala.
Across all patients and all 37 sessions, we recorded 275 single
units in the amygdala (161 left, 114 right) and 243 single units in
the hippocampus (128 left, 115 right). The average background
firing rates for these units were 2.20 and 1.60 spikes/s in the left
and right hippocampus, respectively, and 1.30 and 1.04 spikes per
second in the left and right amygdala, respectively.
In all four regions, some neurons exhibited spiking activity that

significantly differed, on average, for repeated vs. novel items
(“Significant units” in Table 1), but only in the left amygdala
were significant units detected with a frequency (27 of 161) that
exceeded chance expectations (P < 0.0001). This effect was
largely attributable to increased firing rates to novel words. Of
the 27 significant units in the left amygdala, 25 showed a novelty-
detection pattern, whereas two showed the opposite pattern.
Due to chance alone, under the null hypothesis, one would ex-
pect to find ∼0.05 × 161 ∼ 8 significant units in the left amygdala,
with equivalent counts of “novelty detectors” and “familiarity
detectors.” Thus, observing two familiarity detectors likely re-
flects chance alone, but this is unlikely to be the case for the
25 novelty detectors. Among the novelty detectors, the average
normalized firing rate to novel items was 0.54 σ units above

baseline, whereas the average normalized firing rate to repeated
items was only 0.14 σ units above baseline.

Analysis of Spike Count Distributions from the Hippocampus. In the
hippocampus, units distinguishing repeated vs. novel items were
not detected at a significant frequency. Yet, if a given neuron in
the hippocampus strongly responds on only a handful of re-
peated trials (e.g., <5%), as in a sparse distributed coding
scheme, a significant difference in the overall average firing rate
for novel vs. repeated items is unlikely to be detected. To detect
such activity in the hippocampus, if it exists, one should instead
examine the full distributions of normalized spike counts (pooled
across single units recorded from all patients) from trials involving
novel items and, separately, from trials involving repeated items.
In the right hippocampus, no significant differences were observed
in either the means (Fig. 2A) or the SDs (Fig. 2B) of the full
distributions for repeated and novel items. In the left hippocam-
pus, the means of these two distributions also did not differ sig-
nificantly (Fig. 2A), but a reliable difference was observed in their
SDs (Fig. 2B).
Two distributions that have similar means and different SDs

can differ in more than one way (Fig. 3). To investigate the
source of the SD difference between the distributions in the left
hippocampus, we constructed empirical quantile-quantile (QQ)
plots (22). An empirical QQ plot is a graphical method of
analysis that essentially displays one rank-ordered dataset (i.e.,
the sorted normalized spike counts for the repeated items)
against another independently rank-ordered dataset (i.e., the
sorted normalized spike counts for the novel items). We recently
used this approach in a study of episodic memory (23), but be-
cause only 34 single units were recorded, the analysis was based
primarily on multiunits, and convincing evidence of sparse dis-
tributed coding at the level of single units was not demonstrated.
The present analysis is based on a much larger sample of
243 single units, and no multiunits were included.
The QQ plot from left hippocampus (Fig. 4A) is consistent

with a bimodal distribution for repeated items (as illustrated in
Fig. 3B). The pattern is similar for trials in which patients made a
correct response (hit or correct rejection) and trials in which they
made an error (miss or false alarm, Fig. S1). As predicted by the
sparse distributed coding account, the points fall mostly along
the diagonal line and then exhibit a sharp upward deflection at
the upper-right end of the plot. When broken down by lag, the
pattern did not vary in any systematic way as lag increased (Fig.
S2). In the right hippocampus, the QQ plot (Fig. 4B) shows no
apparent departure from the diagonal line, which is consistent
with the finding of similar means and SDs for the repeated- and
novel-item distributions in the right hippocampus (Fig. 2, Right
H). The data in Fig. 4A reflect an episodic memory signal in that
the upward deflection at the upper-right end of the QQ plot
indicates that some neurons responded strongly to a few repeated

Fig. 1. Behavioral forgetting function for the continuous recognition task.
Discriminability (d′) declined significantly as a function of the number of in-
tervening items (lag) according to a repeated-measures ANOVA (P < 0.001).
Each patient’s d′ score was first computed by averaging across recognition test
sessions. Each point in the figure represents the average across all 20 patients.
The smooth curve represents the least-squares fit of a power function, d′ = a ×
Lag−b, where a and b are free parameters. Error bars represent SEs.

Table 1. Recorded units in amygdala and hippocampus

Region Side Recorded units Significant units Fraction adj P

Amygdala L 161 27 0.17 <0.001
R 114 4 0.04 0.827

Hippocampus L 128 11 0.09 0.114
R 115 7 0.06 0.469

The number of recorded units and number of significant units (i.e., units
for which, using an unadjusted t test, mean spikes for repeated items dif-
fered significantly from mean spikes to novel items) from left (L) and right
(R) amygdala and hippocampus. Fraction, significant units/recorded units.
The P value (adj P) is the probability of observing that fraction by chance
alone, after correcting for multiple testing using the Benjamini–Hochberg
procedure. The same procedure was used to compute adjusted P values in
the subsequent analyses.
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words although the same neurons did not respond to those words
when they were novel.
The significant difference in SDs for trials involving novel items

vs. repeated items in the left hippocampus (Fig. 2B, Left H) is
consistent with visual evidence of bimodality in the QQ plot from
left hippocampus (Fig. 4A). If a small upper distribution for re-
peated items is responsible for both the increased SD and the
visual signature of bimodality in the QQ plot (as illustrated in Fig.
3B), then removing a small percentage of scores from the upper
tails of both the novel-item and repeated-item distributions should
eliminate the difference in the SDs as well the visual evidence of
bimodality in the QQ plot. In agreement with that prediction,
when the highest 2.5% of spike counts were removed from both
distributions, the QQ plot for the left hippocampus became es-
sentially linear (Fig. 4C), and the difference in SD between novel
and repeated item distributions was eliminated (Fig. 5B, Left H).
Note that the pattern observed after removing the highest 2.5% of
the scores remains evident when larger proportions of each dis-
tribution are removed (Fig. 6). These results indicate that, when
100% of the data are analyzed, the SD difference in the left
hippocampus (Fig. 2B, Left H) arose because of strong neural
responses that occurred on a small percentage of repeated-word
trials (the same trials responsible for the nonlinear QQ plot in Fig.
4A). Our procedure was a verbal memory task, which likely ex-
plains why the effects were evident in only left hippocampus.
Removing the upper 2.5% of repeated- and novel-item scores

from the aggregate distributions for the left hippocampus not
only eliminated the SD difference between the repeated- and
novel-item distributions, but also revealed another effect. Spe-
cifically, in the left hippocampus, the mean normalized spike
count of the remaining 97.5% of repeated-item scores was now
significantly reduced, relative to the mean of the remaining
97.5% of novel-item scores (Fig. 5A, Left H). This finding sug-
gests that strongly activated neurons (representing an episodic
memory trace) inhibited competing neurons, an effect that has
been termed neural sharpening (8). Upon close inspection, this
effect in the left hippocampus is visually apparent in the QQ plot
(Fig. 4C), in that points on the left end of the plot consistently
fall slightly below the diagonal line.

We next examined which patients and which repeated words
contributed to the highest 2.5% of normalized spike counts. Of
the 20 patients tested, single-unit activity was detected in the left
hippocampus in 13 of them. Of those 13 patients, 11 yielded
normalized spike counts in response to at least four unique
words (mean = 22.3 words) that fell in the top 2.5% of nor-
malized spike counts for repeated items. Thus, the increased SD
associated with repeated items in the left hippocampus (Fig. 2B)
was not caused by a single patient or a single repeated word but
was instead a more general phenomenon.

Analysis of Spike Count Distributions from the Amygdala. As noted
earlier, a general novelty signal in the left amygdala was strong
enough to be detected at the level of individual single units
(Table 1). How does that effect manifest itself in an analysis of
the full novel-item vs. repeated-item distributions of single-unit
recordings? In the left amygdala (but not in the right amygdala),
the overall mean and SD of the full distributions were both
significantly greater for novel compared with repeated items

Fig. 3. Hypothetical novel- and repeated-item aggregate distributions of
normalized spike counts with the same means but different SDs. (A) Distri-
butions with the same shape but different SDs. (B) Distributions with dif-
ferent shapes and different SDs. As predicted by a sparse distributed coding
account, a small percentage of recordings made to repeated items (∼2.5%)
would yield strong responses and the remainder (∼97.5%) would yield
weakly inhibited responses. The strong responses would increase the SD of
the repeated-item distribution. The data conform to this pattern.

Fig. 2. Mean and SD statistics associated with normalized spike counts
(collapsed over patients and sessions) for repeated and novel items. Mean
(A, left y axis) and SD (B, right y axis) of normalized spike counts associated
with the full distributions (100% of the data) for repeated items (n =
12,854 spikes) and novel items (n = 13,822 spikes) in the left and right hip-
pocampus (H) collapsed over lag. The normalized spike counts are expressed
in SD units. In the left hippocampus, repeated words elicited a mean increase
in firing that was 0.05 SD units above baseline (similar to novel words).
However, the SD of the normalized spike counts was larger for repeated
words than novel words (1.144 vs. 1.048). The P values represent the prob-
ability of obtaining the observed difference (for repeated vs. novel items) by
chance, under the null hypothesis of no difference (adjusted for multiple
comparisons). The SD effect tracked item status (repeated vs. novel), not the
behavioral decision. More specifically, the SD scores for hits and misses (re-
peated items) were 1.141 and 1.156, respectively, and the corresponding
values for correct rejections and false alarms (novel items) were 1.060 and
0.994, respectively.
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(Table S1). This overall novelty signal in the left amygdala is
consistent with the fact that 25 single units were identified in the
left amygdala that were general novelty detectors. The QQ plots
for recordings made from left and right amygdala (Fig. S3 A and
B, respectively) show no evidence of bimodality. When 2.5% of
the highest scores were eliminated, the statistical pattern of re-
sults was unaffected, unlike in the left hippocampus. More spe-
cifically, whether 100% of the data are considered or 97.5% of
the data are considered (Table S1), a significant difference is
evident for both the mean and SD in the left amygdala. These
differences remain significant even when 20% of the highest
values are removed from the analysis. Thus, the pattern for both
single-unit activity (Table 1), and the means and SDs of spike
activity aggregated across single units (Table S1), differs for left
amygdala compared with left hippocampus.

Discussion
In studies of semantic memory, single neurons in the medial
temporal lobe have been identified that respond reliably to re-
peated presentations of a known place or landmark, such as the
Eiffel Tower (20, 24, 25). Similarly, in studies of episodic
memory (16–18), single neurons in the medial temporal lobe
have been identified that respond reliably to repeated presen-
tations of items drawn from a general stimulus class (e.g., novel
items). However, repeated stimulus presentations cannot be
used to identify stimulus-specific, episodic representations. A
neuron that codes episodic memory for a previous, context-
specific presentation of a particular stimulus should respond
selectively to the first repetition of that stimulus in a recognition
test (at which time retrieval of the original experience may occur),
but it will not necessarily respond to any subsequent presentations

of that same stimulus. When repeated a second time, the stimulus
may occasion retrieval of the first repetition (coded by different
neurons), not the original experience. We therefore investigated
stimulus-specific episodic coding in the human hippocampus, us-
ing an analysis performed on once-presented test items.
We found evidence for two complementary episodic memory

signals in the human hippocampus, both of which have long been
predicted by neurocomputational models (5–8). First, we iden-
tified a sparse-distributed memory signal, characterized by strong
neural firing in response to repeated items (relative to novel
items) for a small fraction of recordings (<2.5%). Typically, a
neuron exhibited a strong response to only two or three repeated
items but not to any of the other repeated items. Moreover,
small fractions of neurons responded to different repeated items.
Second, we identified a general suppression of firing rates in
response to repeated items for the remaining large fraction of
recordings (∼97.5%). This neural-sharpening pattern was ob-
served in the hippocampus (where sparse distributed coding of
episodic memory is theorized to occur). A similar phenomenon,
termed response suppression, has also been described in peri-
rhinal/inferotemporal cortex in monkeys performing a recogni-
tion memory task (ref. 26, also see discussion in ref. 27).
Suppression of firing rates was not observed in the amygdala.
Instead, in the left amygdala, we identified individual neurons
that function as general novelty detectors (16–18).
The complementary effects observed in the hippocampus may

reflect Hebbian learning coupled with interneuron competition,
now a cornerstone of neurocomputational models (8). Empiri-
cally, a pattern consisting of a small group of cells with high firing
rates coupled with the global suppression of a large group of cells
with much lower firing rates has been reported in area CA1 as
rats formed memories of a novel maze (28). The pattern we
observed in the human hippocampus may reflect similar effects
with respect to the encoding and retrieval of episodic memories.
That is, small neural assemblies, when active, spread inhibition
across many other neurons. This interpretation accords with
other findings showing that interneurons impose surprisingly
widespread inhibition throughout cell layers (29, 30).
In our study, fewer than 2.5% of single units in the hippo-

campus were strongly activated when an item was repeated on
the continuous recognition test. This 2.5% figure reflects a
combination of lifetime sparseness (percentage of stimuli that a
given neuron responds to) and population sparseness (percent-
age of neurons that respond to a given stimulus). These two
measures of sparseness are typically assumed to be similar to

Fig. 5. Mean and SD statistics associated with 97.5% of normalized spike
counts (collapsed over patients and sessions) for repeated and novel items.
Mean (A, left y axis) and SD (B, right y axis) of normalized spike counts after
excluding the highest 2.5% of the scores for each distribution (retaining
97.5% of the data) in the left and right hippocampus. Note in the left hip-
pocampus that the mean firing rates were now significantly different for
repeated vs. novel words, and the SDs were similar. Because the y axis in A
covers a range of negative values, the mean for novel items is greater (i.e.,
closer to 0) than the mean for repeated items. The P values for these sta-
tistical tests were also adjusted for multiple comparisons.

Fig. 4. QQ plots for the left and right hippocampus for 100% of the data
(A and B, respectively) and after excluding 2.5% of the data with the highest
spike counts from both the repeated-item and novel-item distributions
(C and D, respectively). Each point on a QQ plot represents the normalized
average spike count recorded on a single test trial. The plot displays those
values aggregated across trials and patients. In the left hippocampus, the
100% plot displays 12,854 and 13,822 normalized spike counts for repeated
and novel items, respectively. In the right hippocampus, the corresponding
values are 11,089 and 11,955 normalized spike counts.
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each other (31), and they have been found to be highly correlated
in mouse V1 (32). Assuming the same is true of our data, we es-
timate that both lifetime sparseness and population sparseness
in the human hippocampus are less than 2.5%.
Recent evidence suggests that the absolute number of neurons

used to represent an experience is relatively stable between
nonhuman primates and rats (33). Because nonhuman primates
have a larger hippocampus than rats, the implication is that
population sparsity (proportion of active cells) would be smaller
in the nonhuman primate compared with the rat. The nonhuman
primate population sparsity estimate in that study was ∼4% in
CA1, CA3, and DG (for rodents, the estimate was ∼30%). Be-
cause humans have a larger hippocampus than nonhuman pri-
mates, our estimate of less than 2.5% in humans is consistent
with the idea that the absolute number of neurons used to rep-
resent an episodic experience is evolutionarily preserved in hu-
mans, nonhuman primates, and rats.
Neurocomputational models predict sparse coding of episodic

memory in the hippocampus but not in the amygdala. In accor-
dance with that prediction, we found evidence of sparse coding
only in the hippocampus. In the amygdala, a generalized novelty
detection signal was observed. In contrast to the pattern we
observed here, other studies of recognition memory in epilepsy
patients reported evidence for both general novelty detectors
and general familiarity detectors, in both the hippocampus and
the amygdala (16–18, 34, 35). Similarly, another recent study of
one-trial associative learning in epilepsy patients reported
changes in stimulus-specific single-unit activity as a function of
learning in both the hippocampus and the amygdala (36). The
fact that similar memory signals were observed in both structures
in these studies is somewhat surprising given that recognition
memory is a hippocampus-dependent task (but not an amygdala-
dependent task) and that neurocomputational models predict
that memory-related neural activity associated with episodic
memory will be detected in the hippocampus (but not in the
amygdala). It is unclear why memory-related activity of single
units in the hippocampus and amygdala are sometimes similar
and sometimes different.
Although we previously found evidence for a sparse distributed

memory code in the human hippocampus using an old/new

recognition procedure (23), we did not detect any evidence of
either neural sharpening in the hippocampus or novelty detec-
tion in the amygdala, as in the present study. However, that study
involved many fewer single units than we analyzed here, so there
may have been insufficient power to detect an effect. Alterna-
tively, the disparate pattern may reflect task differences. In
continuous recognition memory, novel items carry greater sig-
nificance, relative to study-test recognition, as the participant
must simultaneously classify novel items as new and also encode
them for later recognition. By this interpretation, the novelty
signals we observed in the left amygdala may reflect the high task
relevance of novel items on the continuous recognition task (36).

Methods
Participants. The participants were 21 patients with drug-resistant epilepsy
requiring the implantation of depth electrodes (Ad-Tech Medical) for clinical
evaluation and consideration of possible surgical resection of their seizure foci.
The mean age of the patients was 40 (range 20–61 y), 12 were female, 20 were
right-handed, and all had temporal lobe epilepsy. All patients provided in-
formed consent to participate in the research, using a protocol approved by
the Institutional Review Board of St. Joseph’s Hospital and Medical Center.
The final analysis included data from only 20 patients because the recognition
memory performance of one patient was close to chance (see below).

Materials and Procedure. The patients were tested using a continuous rec-
ognition task with words as stimuli. The words were 120 one-syllable,
120 two-syllable, and 120 three-syllable words, all taken from the Medical
Research Council (MRC) Psycholinguistic database (37). Each word was pre-
sented in either the Bradley or Impulse fonts (the font manipulation had no
effect on any dependent measure, so we collapsed across fonts for all
analyses). One set of stimulus materials consisted of 40 each of the one-,
two-, and three-syllable sets in both fonts. Another 15 one-syllable words in
each font were used as fillers and never repeated. There were three separate
sets of stimulus materials that could be presented, and these were used for
patients who volunteered for multiple sessions.

Each experimental session consisted of a sequence of 255 trials, including
15 filler trials. (Filler words were presented only once to make the overall
probability of repetition equal 50%.) In each trial, a wordwas shown for 1.5 s,
followed by a question mark. Up to 2 s was allowed for a key press, indicating
either that the word was repeated (previously seen in this experimental
session) or novel. Repeated words were presented after 0, 1, 3, 7, 15, or
31 intervening words. In total, we administered 45 recognition tests to
21 patients. Five patients took more than three tests and saw a stimulus set
repeated one or two times, but repetition of the stimuli had no significant
effect on performance (i.e., recognition accuracy was unaffected by having
previously seen a particular stimulus set). Across patients, eight recognition
tests resulted in poor recognition scores (d′ < 0.5) and were excluded from
further neural analysis, leaving 37 sessions to be analyzed from 20 patients.

Microwire Implantation. Electrode implantation was performed stereotacti-
cally (Medtronic StealthStation) using a preoperative structural MRI. This
procedure localizes the tips of the microwires to within 2 mm (38). Bundles of
nine 38-μm-diameter platinum-iridium microwires (California Fine Wire)
were introduced through a lumen within the clinical intraparenchymal
electrode during surgery. The implantation sites were chosen according to
clinical criteria, which limits the potential recording sites. For the 20 patients
studied here, however, the sites included the hippocampus and amygdala,
bilaterally. In the hippocampus, the wires were targeted to be in the mid-
body of the hippocampus, just behind the head of the hippocampus, op-
posite the apex of the cerebral peduncle. In the amygdala, the wires were
targeted to be in the center of that structure.

Filtering and Event Detection. Extracellular potentials were recorded from the
tips of the microwires using techniques previously described (39) and digi-
tized at 29,412 Hz with 16-bit resolution. Possible action potential events
(APs) were detected using digital filtering and thresholding (39). Because
more than one neuron may be recorded near any given electrode, APs were
sorted into several clusters of similar waveform shape using the open-source
clustering program KlustaKwik (Klustakwik.sf.net). After sorting, each clus-
ter was graded as being noise, multiunit activity (MUA), or single-unit ac-
tivity (SUA) based on criteria such as the waveform shape (Fig. S4), size of the
waveform relative to noise, evidence of a refractory interval, and lack of
powerline interference, using the criteria described previously (39).

Fig. 6. Statistics for the full distribution of scores represented as the dif-
ference in normalized firing rates for repeated vs. novel items in the left
hippocampus. The figure shows difference scores for means and SDs as a
function of the proportion of the scores from each distribution that was
included in the analysis. The mean and SD difference scores for proportions
of 1.00 and 0.975 correspond to the data for the left hippocampus shown in
Figs. 2A and 5A, respectively. The asterisks indicate that the difference was
significant at P < 0.05 (not corrected for multiple comparisons).
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In our experience, this technique produces results comparable to prior
reports in other laboratories (19) in terms of recorded waveform shapes,
interspike intervals, and firing rates. While it is important to note that these
and other reports of human single-unit recordings (40, 41) do not achieve
the quality of unit separation achievable in animal recordings (42), they
nonetheless represent neural activity at a much finer spatial and temporal
scale than is achievable using other methods such as fMRI. Measurement at a
fine spatial and temporal scale (not necessarily the measurement of single
units per se) is necessary to test the predictions of neurocomputational
models that assume a sparse distributed episodic memory coding scheme.

We recorded from a total of 1,546 clusters of events representing neural
activity in the medial temporal lobe (amygdala and hippocampus), 518 of
which satisfied the criteria for SUA and 1,028 of which were categorized as
MUA. In this report, we focused on SUA (161 neurons in the left amygdala,
114 neurons in the right amygdala, 128 neurons in the left hippocampus, and
115 neurons in the right hippocampus). Poststimulus spike counts for each
unit were recorded 200–1,000 ms after the onset of the test stimulus, and
prestimulus (baseline) spike counts were recorded 200–1,000 ms before the
onset of the test stimulus. The test period during which poststimulus spike
counts were recorded was chosen because a previous study (20) found that
selective responses of hippocampal neurons began ∼300 ms after stimulus
onset and because nearly all behavioral responses occurred after 1 s.

Data Analysis. For every recorded neuron, we computed normalized spike
counts for each trial (i), where a “trial” refers to the presentation of a novel
or repeated word. For each neuron (j), its baseline mean and SD of spike
counts (μj and σj, respectively) were computed across all trials in that session.
Normalized poststimulus spike counts for a given trial (Nij) in which sij raw
spike counts were recorded on trial i for neuron j is given by Nij = (sij − μj)/σj.
Trials in which a behavioral response occurred during the 1.5-s stimulus
presentation (and, therefore, before the signal to respond was presented)
were denoted as “early” responses and were excluded from the analysis.

The data were analyzed separately for each of four brain regions (left
hippocampus, right hippocampus, left amygdala, and right amygdala). First,
we performed a conventional analysis on the normalized spike counts (using
ANOVA) to identify individual neurons in the hippocampus and/or amygdala
that were responsive to the general class of novel or repeated items, with
word repetition status (novel vs. repeated) as the independent variable.
Second, an aggregate analysis was performed on the full distributions of
normalized single unit activity in a given region (collapsed over patients and
sessions) for novel and repeated items. The question was whether the mean
and/or SD of the repeated-item distribution differed significantly from the
corresponding parameters of the novel-item distribution (e.g., in the left
hippocampus). The statistical reliability of any difference in either the mean
or the SD of the two distributions was tested using a bootstrap procedure. For
each test (e.g., comparing the SDs for novel and repeated items in the left
hippocampus), 10,000 bootstrap trials were performed in which (i) the data
from all repeated words (nRepeated) and all novel words (nNovel) were com-
bined, (ii) nRepeated bootstrap “targets” and nNovel bootstrap “foils” were
randomly sampled with replacement from that combined dataset, and
(iii ) the difference between the statistic of interest (e.g., SD) of those
two bootstrap samples was computed. The resulting P value was the pro-
portion of bootstrap trials in which the absolute value of the difference was
greater than the observed difference. A similar bootstrap analysis yielded
the estimated SEs shown in Figs. 2, 5, and 6.
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SI Results
Left Hippocampus. Fig. S1 shows QQ plots from the left hippo-
campus broken down by correct and incorrect behavioral re-
sponses. The pattern is suggestive of bimodality regardless of the
accuracy of the behavioral response. Fig. S2 shows QQ plots from
the left hippocampus broken down by lag. The left column shows
the results when 100% of recordings are included in the analysis,
and the right column shows the results when the highest 2.5% of
recordings for novel items and repeated items are excluded from
the analysis. A pattern consistent with sparse distributed coding is
evident across most of the lags with the exceptions of 8 and 16. In
all cases, the QQ plot pattern is essentially linear when the highest
2.5% of the scores are eliminated from the analysis (as shown by
the QQ plots in the right column).

Left Amygdala.As noted earlier, a general novelty signal in the left
amygdala was strong enough to be convincingly detected at the
level of individual single units (Table 1). How does that effect
manifest itself in the full novel- and repeated-item distributions of
single-unit recordings made from the amygdala? The mean and
SD scores computed from the full distributions were both sig-
nificantly greater for novel items compared with repeated items in
the left amygdala but not in the right amygdala (Table S1). Again,
the fact that these effects are observed in the left but not right
amygdala may be attributable to the fact that a verbal memory
task was used in our experiment. This overall novelty signal in the

left amygdala is consistent with the fact that 25 single units were
identified in the left amygdala that were general novelty detectors
(i.e., they responded significantly more, on average, to novel items
than to repeated items). The fact that a subset of single units were
novelty detectors would account for both the mean and SD
differences in the full distributions in the left amygdala (Table S1).
The QQ plots for recordings made from the left and right

amygdala (Fig. S3 A and B, respectively) both show slight evi-
dence of novelty detection at the very high end of each plot.
However, visual appearances notwithstanding, the number of
points that fall visibly below the diagonal line toward the upper
end is extremely small (∼0.1% of all points). These points did
not have an appreciable effect on either the means or the SDs
shown in Table S1, both because there were so few and because
the degree to which they deviated from the diagonal line was
relatively small. In fact, when 2.5% of the highest scores are
eliminated (thereby eliminating all of the points diverging below
the diagonal line and more), the statistical pattern of results does
not change. In other words, whether 100% of the data are
considered or 97.5% of the data are considered (Table S1), a
significant difference is evident for novel and repeated items—
for both the mean and SD—in the left amygdala but not in the
right amygdala. In fact, those differences remain significant even
when 20% of the highest values are removed from the analysis.
Thus, the results suggest a general pattern of novelty detection.
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Fig. S1. QQ plots for left hippocampus for correct behavioral (A) and incorrect behavioral (B) decisions. Correct behavioral decisions consist of hits and correct
rejections, and incorrect behavioral decisions consist of misses and false alarms. Each point on a QQ plot represents the normalized average spike count
recorded on a single test trial. The plot displays those values aggregated across trials and patients. For correct decisions, the plot displays 10,695 and
11,163 normalized spike counts for hits and correct rejections, respectively. For incorrect decisions, the plot displays 2,159 and 2,659 normalized spike counts
for hits and correct rejections, respectively.

Fig. S2. QQ plots for left hippocampus for 100% of the data (Left) and after excluding 2.5% of the data with the highest spike counts from both the
repeated-item and novel-item distributions (Right) separately for each lag.
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Fig. S3. QQ plots for the left and right amygdala for 100% of the data (A and B, respectively) and after excluding the upper 2.5% of the data (C and D,
respectively). In the left amygdala, the 100% plot displays 15,121 and 16,191 normalized spike counts for repeated and novel items, respectively. In the right
hippocampus, the corresponding values are 10,153 and 11,379 normalized spike counts.
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Fig. S4. Waveform shape of single-unit activity recorded in the left hippocampus. x axis: Time during waveform in milliseconds, with peak centered at 0.25 ms.
y axis: Extracellular potential difference in microvolts; solid line shows the average value of all possible action potential events in the cluster, dotted lines
show ±1 SD.
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Table S1. Distributional statistics (mean and SD) for recordings made from left and right
amygdala

Left Right

Data analyzed, % Statistic Repeated Novel adj P Repeated Novel adj P

100 Mean 0.09 0.19 <0.001 0.01 0.00 0.686
SD 1.08 1.15 <0.001 1.00 1.01 0.686
n 15,121 16,191 — 10,153 11,379 —

97.5 Mean −0.01 0.08 <0.001 −0.10 −0.11 0.609
SD 0.88 0.95 <0.001 0.74 0.74 0.814
n 14,742 15,786 — 9,899 11,094 —

Mean, SD, and number of normalized spike counts (n) associated with the distributions for repeated
and novel items in the left and right amygdala (aggregated over all recorded units and trials) for 100% of
the data (top 3 rows) and after excluding the highest 2.5% of the scores for each distribution, thereby
retaining 97.5% of the data (bottom 3 rows).
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