Preserved Learning and Retention of Pattern-Analyzing Skill in Amnesia: Dissociation of Knowing How and Knowing That

Neal J. Cohen and Larry R. Squire

Copyright © 1980 by the American Association for the Advancement of Science
Preserved Learning and Retention of Pattern-Analyzing Skill in Amnesia: Dissociation of Knowing How and Knowing That

Abstract. Amnesic patients acquired a mirror-reading skill at a rate equivalent to that of matched control subjects and retained it for at least 3 months. The results indicate that the class of preserved learning skills in amnesia is broader than previously reported. Amnesia seems to spare information that is based on rules or procedures, as contrasted with information that is data-based or declarative—"knowing how" rather than "knowing that." The results support the hypothesis that such a distinction is honored by the nervous system.

Amnesia, a neurologic syndrome characterized by a deficit in the formation of new memories, can exist independently of other cognitive impairment. The deficit is global, affecting both verbal and nonverbal material irrespective of modality (1). In particularly severe amnesia, as exhibited, for example, by the noted case of H.M. (2, 3), the impairment has been described as "forgetting the incidents of daily life as fast as they occur" (2, p. 15).

Amnesic patients have nonetheless been reported to learn and remember certain perceptual-motor skills, including tracking and mirror tracing (4–7), frequently at a rate comparable to that of control subjects (6, 7). Yet these same patients had little or no recollection of having previously performed the task.

Fig. 1. Anterograde amnesia for ten word pairs presented three times. After each presentation, subjects saw the first word of each pair and tried to recall the second.
They have also been reported to increase the speed with which they perform maze-learning tasks, despite their failing to learn the appropriate sequence of turns (6, 8). In addition, work with normal subjects has dissociated kinesthetic-motor memory from spatial and verbal memory on the basis of differences in forgetting rates and in susceptibility to interference (9). These data have suggested that perceptual-motor information might enjoy a special neurologic status that could be responsible for the sparing of perceptual-motor skills in amnesia.

We now report that the class of preserved learning skills in amnesia extends beyond perceptual-motor tasks. Amnesic patients were able to acquire a mirror-reading skill that minimized perceptual-motor involvement and were able to retain it for more than 3 months. In three consecutive daily sessions and in a fourth session 13 weeks later, eight amnesic patients learned to read mirror-reflected words at a rate equivalent to that of matched control subjects. The mirror-reading task was selected because of its dependence on pattern-analyzing rather than perceptual-motor skills (10–12). The subjects learned the mirror-reading skill despite amnesia for the words that had been read and with negligible recollection of having previously performed the task.

We tested N.A., who has been amnesic for verbal material since sustaining a stab wound to the diencephalon in 1960 (13); four patients with chronic alcoholic Korsakoff syndrome; three patients tested 6 to 9 days after a prescribed course of bilateral electroconvulsive therapy (ECT) for relief of depressive illness (14); and control subjects for N.A. and for the Korsakoff patients (15). All patients were severely amnesic as assessed by formal tests of new learning ability and by their inability to remember day-to-day events (Fig. 1) (16).

Subjects saw cards presented by mirror-reflection in a tachistoscope, each card displaying three low-frequency nouns with eight to ten letters; for example, they saw

Subjects were asked to read each word aloud and to press a button when finished. The button press stopped a millisecond timer and terminated the trial. Subjects read five blocks of ten word trials on each of three consecutive days and also on a fourth day approximately 13 weeks later. For each block of ten trials, half were common to all blocks (repeated) and half were unique (nonrepeated). By analyzing separately the performance for the nonrepeated and the repeated word trials, we evaluated the ability to acquire the rules or procedures necessary for mirror reading, and also evaluated the ability to benefit from frequent repetition of specific words.

All amnesic patients learned the pattern-analyzing skill (nonrepeated word trials) (Fig. 2) [main effect of block number: F(4, 28) = 12.65, P < .001; main effect of test day: F(2, 14) = 14.63, P < .01; linear component: F(1, 5) = 179.72, P < .001]. Indeed, N.A. and the Korsakoff patients learned at a rate equivalent to that of their matched controls (17).

For all subjects, the learning curves for the repeated trials were similar to but steeper than those for the nonrepeated trials [F(1, 18) = 101.14, P < .001], which reflected the facilitatory effect on reading speed of remembering the specific words that were repeated from block to block. This facilitatory effect was smaller for the amnesic patients than for the control subjects (18), which illustrates that, despite learning the mirror-reading skill normally, amnesics were poor at remembering which words they had read. This dissociation can be appreciated most clearly in Fig. 3. For performance on nonrepeated word trials, which depends only on the rules or procedures involved in mirror reading, there was no forgetting between sessions by either the amnesic patients [t(6) < 1. P > .3] or by the controls [t(10) < 1. P > .3]. For performance on repeated
The striking deficit in memory for specific items exhibited by the amnesic patients was also illustrated by their poor performance on a recognition memory test administered after day 3 of testing (19). For the nonrepeated words, recognition d' was amnesiacs, 0.36 ± 0.1; controls, 1.46 ± 0.2 [t (18) = 3.07, P < .01]; for the repeated words, recognition d' was amnesiacs, 1.97 ± 0.4; controls, 3.79 ± 0.1 [t (18) = 4.24, P < .001]. Upon being questioned, none of the amnesic patients reported that words had been repeated during the task, even though by the end of session 4 the set of repeated words had been presented 20 times. All of the control subjects reported spontaneously that words were frequently repeated.

The finding of intact acquisition and retention of mirror-reading skill in amnesic patients adds to the set of learning skills known to be preserved in amnesia, and suggests that the class of preserved learning skills may be considerably broader than was previously thought. The traditional view has held that the role of motor information is crucial in determining which tasks amnesics can learn. This view is based on the premise that motor information plays a special role in the neurologic status and is thereby spared in amnesia. However, amnesic patients have recently been found to be impaired in a test of short-term kinesthetic-memory (20), which indicates that motor performance is not uniformly spared in amnesia. Moreover, amnesic patients can learn skills that are apparently not perceptual-motor in nature, including the present pattern-analyzing skill. Thus, there have been reports of numerical rule learning (21) and eyeblink conditioning (22) in amnesic patients, and anecdotal observations (23) that amnesic patients are often good at learning testing procedures even when they fail on the tests (24).

If, as Kolvers suggested (11, 12), acquiring reading skills involves the learning of encoding operations or procedures rather than the remembering of specific results of these operations, amnesic patients seem to provide a clear example of this distinction. Amnesic patients can apparently learn the encoding rules or procedures for acquiring skills, but can remember little or nothing of the information that results from applying them. Whether a task can or cannot be learned in amnesia seems to depend on the nature of the information and not on the extent of motor involvement demanded by the task. We propose that perceptual-motor and pattern-analyzing skills belong to a class of operations governed by rules or procedures; these operations have information-processing and memory characteristics different from those operations that depend on specific, declarative, data-based material. Although the distinction we have drawn between these classes of information may not permit all tasks to be sharply dichotomized, it should prove useful in predicting what is affected or spared in amnesia. This distinction between procedural or rule-based information and declarative or data-based information, which is reminiscent of the classical distinction between "knowing how" and "knowing that," has been the subject of considerable discussion in the literature of cognition and artificial intelligence (25). The experimental findings described here provide evidence that such a distinction is honored by the nervous system.

References and Notes

4. S. Corkin, ibid., p. 255.

10. In a series of studies of the ability of normal subjects to read geometrically inverted text (11, 12), Kolvers found excellent acquisition and long-term retention of pattern-analyzing operations "that are directed at the surface lexical features of the text" and that can be distinguished from memory for the results of these operations, "the semantic or other grammatical content of text that is the subject of most contemporary studies" (11).

14. The patients had received a series of seven to ten bilateral thalamic lesions. B. Cronholm and C. Bromingst (Acta Psychiatr. Scand. 34, 18 [1959]) and B. Cronholm and J.-O. Ottosson (Br. J. Psychiatry 109, 251 [1966]) found amnesia in one amnesiac 1 week after a series of two to seven and a series of four or five bilateral thalamic procedures, respectively.

15. Six normal control subjects were matched to N.A. for age (mean 38.8 years; N.A., 42 years), subjects scores, on the Wechsler Adult Intelligence Scale (WAIS) (information: 21.7 versus 22; vocabulary: 60.0 versus 60), and educational background (8 years versus 13 years). Six alcoholic control subjects were matched to the Korsakoff patients for age (48.5 years versus 51 years) and subjects scores on the WAIS (information: 17.2 versus 17.5; vocabulary: 50.7 versus 46.3), and educational background (10.7 years versus 12.2 years).

16. Their deficit was also observed in delayed recall of prose material. After a 15-minute delay, N.A. and the Korsakoff patients could remember none of the material learned 15 minutes earlier, and the ECT patients recalled an average of 2.1 sentences. In contrast, the six control subjects recalled 6.8 sentences and the alcoholic control subjects recalled 4.7 sentences after the same delay.

17. N.A.'s reading time fell outside the 95 percent confidence interval for only 3 of the 20 blocks and did not vary from the final 8 blocks. For Korsakoff patients and their alcoholic controls, there was no significant effect of subject group F(1, 19) = 0.12, P > .3 and no interaction of subject group with either block number F(4, 32) < 1, P > .3 or test day F(3, 24) < 1, P > .3.

18. For both the amnesic patients and the control subjects, we calculated for each block the ratio between reading time per repeated word triad and reading time per nonrepeated word triad. Compared with amnesic patients, control subjects benefited more rapidly from the repeated word triads [main effect of subject group: F(1, 19) = 18.17, P < .001; interaction of subject group by block number: F(4, 72) = 3.72, P < .01; interaction of subject group by test day: F(3, 54) = 3.86, P < .05] and to a greater extent (lowest average of ratio attained: amnesics, 29; controls, 15; average value of ratio attained: amnesics, 48; controls, 31).

19. Each subject inspected a list of words which included the 15 repeated words, 45 nonrepeated words, and 60 distractor words and marked those words that could be remembered from the 3 days of testing.

visual cues. In a procedure that separated distance cues and end location cues, both amnesic patients and control subjects accurately reproduced movements in a no-delay condition, but the amnesic patients were impaired relative to controls after delays of 12 and 60 seconds.

23. S. Corkin (4) referred to this phenomenon as "sparing of testing habits" after M. Glickstein and R. W. Sperry (J. Comp. Physiol. Psychol. 53, 322 (1960)).

24. It is not yet clear how the performance of amnesic patients on numerical rule learning or classical conditioning compares with the performance of control subjects. Only when amnesic patients perform as well as controls is it possible to argue conclusively for preserved learning or memory in amnesia. Good, but not normal, performance by amnesic patients could occur because some methods of testing yield good performance in all subjects (L. R. Squire, Neuropsychologia 18, 369 (1980)) and not because the aspect of memory under study is preserved in amnesia. Thus, reports of good performance by amnesic patients on incomplete figures (E. Warrington and L. Weiskrantz, Nature (London) 217, 972 (1968)) or partial information (ibid. 228, 628 (1970); Neuropsychologia 12, 419 (1974)) do not necessarily mean that these tasks demonstrate preserved function. Amnesic patients often do rather well in recognition memory tasks compared with free recall tasks, but the advantage of recognition memory over free recall applies to control subjects as well (G. Talland, Deranged Memory (Academic Press, New York, 1965), p. 231).

26. Supported by the Medical Research Service of the Veterans Administration, by National Institute of Mental Health grant MH24600, and by NIMH Mental Health Clinical Research Center grant 1P50 MH 30914.

3 March 1980; revised 11 June 1980