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Abstract: The medial temporal lobe (MTL) is critical for declarative memory formation. Several theories
of MTL function propose functional distinctions between the different structures of the MTL, namely
the hippocampus and the surrounding cortical areas. Furthermore, computational models and electro-
physiological studies in animals suggest distinctions between the subregions of the hippocampus itself.
Standard fMRI resolution is not sufficiently fine to resolve activity on the scale of hippocampal sub-
regions. Several approaches to scanning the MTL at high resolutions have been made, however there
are limitations to these approaches, namely difficulty in conducting group-level analyses. We demon-
strate here techniques for scanning the MTL at high resolution and analyzing the high-resolution fMRI
data at the group level. To address the issue of cross-participant alignment, we employ the ROI-
LDDMM alignment technique, which is demonstrated to result in smaller alignment errors when com-
pared with several other common normalization techniques. Finally, we demonstrate that the pattern
of activation obtained in the high-resolution functional data is similar to that obtained at lower resolu-
tion, although the spatial extent is smaller and the percent signal change is greater. This difference in
the pattern of activation may be due to less partial volume sampling in the high-resolution data, result-
ing in more accentuated regions of activation. Hum Brain Mapp 28:959–966, 2007. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

The medial temporal lobe (MTL) is known to be critically
involved in declarative memory [Scoville and Milner, 1957;
Squire et al., 2004]. Several different classes of theories of

MTL function have posited functional distinctions between
the various MTL structures. For example, the hippocampal
region, including the dentate gyrus (DG), CA fields (CA1,
CA3) and subiculum (SUB), is posited to support relational
[Eichenbaum et al., 1994], recollective [Yonelinas, 2002] or
associative [Aggleton and Brown, 1999; Brown and Aggle-
ton, 2001] processing, while the adjacent MTL cortical areas
(entorhinal, perirhinal, and parahippocampal cortices) are
thought to support single-item [Aggleton and Brown, 1999;
Brown and Aggleton, 2001] or familiarity [Yonelinas, 2002]
processes. Furthermore, computational models of the hippo-
campus posit further functional specialization within the
hippocampus itself [Marr, 1971; McClelland et al., 1995;
O’Reilly and Rudy, 2001; Rolls et al., 2002]. For example,
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Marr [1971] described the CA3 as an autoassociative net-
work capable of pattern completion, a process whereby a
previously stored pattern of activity can be re-instantiated
given noisy or degraded cues. Subsequent models have
ascribed pattern separation (a process whereby overlapping
or similar patterns of activity are orthogonalized in a sparse
representation) to the DG.
While electrophysiological [Lee et al., 2004a,b; Leutgeb

et al., 2004] and animal lesion [Kesner et al., 2000] data sup-
port the predictions of the models of hippocampal function,
there are relatively few data from noninvasive neuroimag-
ing techniques in humans bearing on the models’ predic-
tions. One difficulty is the spatial resolution of standard
fMRI is too coarse to resolve activity within sub-regions of
the hippocampus. Several approaches at scanning the MTL
at high resolution have been made.
In one, high-resolution functional data have been collected

and anatomical-defined regions of interest (ROIs) have been
used to collapse all data from an anatomical region (e.g.
CA1) into a single functional timecourse [Preston et al.,
2005]. The primary advantage of this technique is also its
primary disadvantage. By collapsing all voxels within a
region, signal-to-noise is increased if the region is largely ho-
mogeneous in function. If multiple functions (multiple pat-
terns of activity) are present, this approach suffers. In a sec-
ond approach, cortical unfolding techniques have been
applied to the spiral structure of the hippocampus and adja-
cent cortex [Zeineh et al., 2000, 2003]. This converts the
three-dimensional structures into two-dimensional ‘‘flat
maps.’’ Accurate cross-participant alignment is substantially
easier in a flat 2D space than in a 3D space. However, when
used in the hippocampus, this technique places heavy
demands on the unfolding process. In attempting to unfold
the hippocampus’ tight spiral structure, any small misalign-
ment between structural and functional data or any voxels
that straddle two adjacent regions can lead to mislocaliza-
tion of activity or a splitting of a single region of activity into
two. Thus activity in a single voxel may be attributed to both
DG and CA1, for example.
We describe here a novel approach to collecting and ana-

lyzing high-resolution fMRI data. While the specific struc-
tures under investigation are the MTL structures underlying
declarative memory, the techniques described are equally
well-suited to investigation of other brain regions and pro-
cesses. For purposes of comparison, and to validate the
high-resolution scanning technique, we use a behavioral
paradigm here that has been demonstrated to activate the
MTL in a reliable fashion [Flanery and Stark, submitted;
Law et al., 2005].

METHOD

Participants

Twenty right-handed participants (8 female) gave written
informed consent before participating. Mean age was 25.1
(range 20–46). One participant’s data was excluded from the

functional analysis due to excessive motion between scans.
Participants were recruited from the Johns Hopkins commu-
nity and were paid for their participation.

Behavioral Method

The behavioral task was that used by Law et al. [Law
et al., 2005] and Flanery and Stark [submitted]. This is a task
that has been demonstrated to elicit robust activation of the
MTL, and therefore served as a benchmark task in evaluat-
ing the scanning and analysis methods. The stimuli were
randomly generated kaleidoscope images [Miyashita et al.,
1991]. For 132 trials per scan run, participants were first
shown a stimulus with four square outlines superimposed
on it. Participants were given four response buttons and
instructed that each stimulus was paired with one of the but-
tons, corresponding to the four boxes on the screen. Partici-
pants were instructed to guess which response goes with
each stimulus and were told that they would receive feed-
back regarding their guess. Thus, participants learned
through trial and error the correct paired associate to each of
the stimuli. During each trial, the initial stimulus presenta-
tion lasted 500 ms, followed by a 700 ms wait period. Partici-
pants were cued to make a response following the wait pe-
riod during the response period, which lasted 700 ms. Par-
ticipants were given feedback for 800 ms (‘‘yes’’ if their
response was the correct button associated with that stimu-
lus, ‘‘no’’ if they were incorrect, and ‘‘?’’ if they failed to
make a response in the response window). Twenty-four to
forty-eight hours prior to scanning, participants were
trained on the task using a set of four ‘‘reference’’ stimuli
that remained constant throughout the task. During scan-
ning, participants were required to learn from four to eight
new test stimuli at a time in addition to the four reference
stimuli. As performance on individual test stimuli im-
proved, they were replaced, thus keeping the overall level of
performance relatively constant across the scan session. In
addition to test and reference trials, 32 null trials were also
randomly interspersed in each run [Dale, 1999]. The overall
structure of null trials was the same as test or reference tri-
als, however instead of a kaleidoscopic image as a stimulus,
participants were shown a fixed, random visual static pat-
tern. One of the response boxes was randomly assigned as
the target on each trial and was set at a slightly greater opac-
ity than the other three boxes. The difference between the
opacity of the target and the other boxes was set to be one of
the more difficult levels as determined by [Law et al., 2005,
experiment 2].

fMRI Imaging Parameters

MRI data were collected on a Phillips 3T scanner (Best,
The Netherlands) equipped with a SENSE (sensitivity
encoding) head coil at the F. M. Kirby Research Center for
Functional Brain Imaging at the Kennedy Krieger Institute
(Baltimore, MD). A parallel imaging technique, SENSE, was
used to acquire the data that significantly reduced acquisi-
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tion time and distortion attributable to magnetic susceptibil-
ity [Pruessmann et al., 1999]. Functional echoplanar images
were collected using a high-speed echoplanar single-shot
pulse sequence with an acquisition matrix size of 64 � 64, an
echo time of 30 ms, a flip angle of 708, a SENSE factor of 2,
and an in-plane acquisition resolution of 1.5 � 1.5 mm2. This
voxel size (1.5 � 1.5 � 1.5 mm3) was chosen based on the
results of Hyde et al. [Hyde et al., 2001] who showed that
this voxel size demonstrated the greatest functional signal-
to-noise ratio when compared with other cubic voxel sizes.
It is worth noting that this reduction in slice thickness will
also have the benefit of reducing spatial distortion [Buxton,
2001]. In each run, a total of 264 volumes were acquired with
a TR of 1.5 s. Each volume consisted of 19 oblique axial slices
aligned to the long axis of the hippocampus and centered to
include the hippocampus and the parahippocampal gyrus.
Data acquisition began after the fourth image to allow for
stabilization of the MR signal.
For anatomical localization and cross-participant align-

ment, a series of structural scans were acquired. The first
was a standard whole-brain, three-dimensional magnetiza-
tion-prepared rapid gradient echo (MP-RAGE) pulse
sequence (150 oblique axial slices, 1 � 1 � 1 mm3 voxels). In
addition, between three and five high-resolution (60 oblique
axial slices, 0.75 � 0.75 � 0.75 mm3 voxels) MP-RAGE scans
were acquired, which were later averaged and aligned with
the standard MP-RAGE. The high-resolution MP-RAGE
scans afforded a more detailed picture of the subregions of
the hippocampus and were used in defining these sub-
regions in the cross participant alignment analysis (see next
section).

fMRI Data Analysis

Data analysis was carried out using the Analysis of Func-
tional Neuroimages (AFNI) software [Cox, 1996]. Functional
data and high-resolution structural data were coregistered
in three dimensions to the standard whole-brain anatomical
data (Figure 2). Functional data were also coregistered
through time to reduce any effects of head motion. Time
periods in which a significant motion event (>3 degrees of
rotation or 2 mm of translation in any direction) occurred,
plus and minus 1 TR, were eliminated from the analysis. Fol-
lowing the analyses of Law et al. [2005] and Flanery and
Stark [submitted], we sorted test trials according to memory
strength, as determined by their behavioral performance.
Briefly, we used a logistic regression algorithm developed
by Brown and colleagues [Smith and Brown, 2003; Smith
et al., 2004] to convert the binary performance on each trial
to an estimate of memory strength. The algorithm uses the
behavioral performance to estimate the probability that the
next trial will be correct. Thus, based on this probability,
each trial was sorted into one of five memory strength bins.
Behavioral vectors were then developed which coded for

memory strengths 1–5, reference trials, and first presenta-
tions (the first time in the experiment a given stimulus was
seen). These vectors were used in an analysis using a decon-

volution approach based on multiple linear regression
(3dDeconvolve; http://afni.nimh.nih.gov/pub/dist/doc/
manuals/3dDeconvolve.pdf). The resultant fit coefficients
(b coefficients) represent activity versus baseline for a given
time point and trial type in a voxel. The sum of the fit coeffi-
cients over the expected hemodynamic response (�3–12 s af-
ter trial onset) was taken as the estimate of the model of the
response to each trial type (relative to the null-task baseline),
which was converted to percent signal change.

Cross Participant Alignment

The cross participant alignment used an example of the
region of interest alignment (ROI-AL) approach developed
by our laboratory [Stark and Okado, 2003]. This approach
uses an objective function that maximizes the overlap of 3D
segmented ROI labels (i.e., hippocampus atop hippocam-
pus, perirhinal cortex atop perirhinal cortex, etc). In particu-
lar, the technique used here extends the version of ROI-AL
that employs large deformation diffeomorphic metric map-
ping (ROI-LDDMM) [Miller et al., 2005] to map between an
individual parpticipant’s 3D ROI segmentation and a 3D
template segmentation of the MTL. LDDMM creates a 3D
vector field that smoothly transforms images between co-
ordinate systems so that connected sets remain connected,
disjoint sets remain disjoint, and submanifold structures are
preserved. This preservation is particularly important for
averaging functional data where the bijective property of the
maps ensures that artifacts because of superposition of func-
tional data from neighboring regions are avoided.
The alignment of the structural and functional data pro-

ceeded in several steps. First, all participants’ anatomical
and functional scans were normalized to the Talairach atlas
[Talairach and Tournoux, 1988] using AFNI. This was done
to provide a rough initial alignment and remove large spa-
tial shifts between subjects, thus improving the potential
performance of ROI-LDDMM. Anatomical regions of inter-
est were fully segmented in 3D on the Talairach transformed
standard (1 mm3) MP-RAGE images for the temporal polar,
entorhinal, and perirhinal cotices according the landmarks
described by Insausti et al.[1998]. The parahippocampal cor-
tex was defined bilaterally as the portion of the parahippo-
campal gyrus caudal to the perirhinal cortex and rostral to
the splenium of the corpus callosum, as in our previous
research [Kirwan and Stark, 2004; Law et al., 2005; Stark and
Okado, 2003].
Extending our previous techniques, the subfields of the

hippocampus were also defined bilaterally. The subfield of
the hippocampus were defined as the DG/CA3 (dentate
gyrus and CA3 field), CA1, and SUB (subiculum) [Cser-
nansky et al., 2005; Wang et al., 2003] following the atlas of
Duvernoy [1998] using the high-resolution (0.75 mm3) MP-
RAGE (see Fig. 1B). Duvernoy [1998] describes eight coronal
slices along the anterior–posterior axis of the hippocampus.
Representative slices in each hippocampus that best (closest)
resembled the slices described were chosen and segmented
according to the atlas description. The segmentation then
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proceeded from these slices in both directions slice by slice
to ensure a smooth transition between the slices.
A model for the ROI-LDDMM transformation calculations

was then constructed by first choosing a single participant
(number 2) to serve as the initial model for the transforma-
tion calculation for all the other participants. Once each par-
ticipant’s set of ROIs had been warped to the subject model,
a central tendency was determined by taking the mode of all

20 participants’ transformed ROI labels. This central tend-
ency (the modal model) then served as the model for subse-
quent ROI-LDDMM transformations as each individual sub-

Figure 1.

MTL segmentation. A: A coronal section from a standard

(1 mm3) MP-RAGE. The red box indicates the area enlarged in

B–F. B: The same coronal slice with the anatomical regions CA1

(red), CA3/DG (light blue), Subiculum (dark blue), and parahip-

pocampal cortex (purple) overlayed. Not shown are entorhinal,

perirhinal, and temporopolar cortex. Average alignment of 20

subjects’ CA1 region after alignment with C: FSL, D: SPM, E:

Talairach, and F: ROI-LDDMM. Red areas indicate 100% overlap,

while green indicates <25% overlap between subjects.

Figure 2.

Functional to structural coregistration. A: An oblique axial slice

from a high-resolution MP-RAGE (0.75 � 0.75 � 0.75 mm3 vox-

els). The slice is aligned with the primary axis of the hippocam-

pus, outlined here in red. B: The same outline overlaid on the

functional EPI data for the same subject.
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ject’s MTL ROIs was warped with ROI-LDDMM onto the
model.
Percent signal change maps were first transformed to

Talairach space keeping the same (1.5 mm3) resolution.
The maps were then blurred with a 3-mm full-width at half
maximum (FWHM) Gaussian kernel that respected the an-
atomical boundaries defined for each participant’s MTL. In
order to minimize the loss of spatial resolution due to blur-
ring but at the same time account for any residual inter-
subject functional variability, we chose a small (3 mm) ker-
nel and constrained the blur such that the statistical maps
were blurred within the anatomically defined ROIs. This
approach results in a small loss of spatial resolution within
an individual ROI, but by cutting off the blur at the ana-
tomical boundaries defined within the MTL, the localiza-
tion of activations between regions of the MTL does not
suffer from this loss. Finally, the transformation matrix cal-
culated for each subject in the ROI-LDDMM process was
applied to the statistical maps.
To validate the alignment technique and for comparison,

the ROIs were aligned using several other methods, includ-
ing FLIRT [Jenkinson et al., 2002] in the FSL analysis pack-
age (http://www.fmrib.ox.ac.uk/fsl/index.html), SPM2
(http://www.fil.ion.ucl.ac.uk/spm/), and ROI-LDDMM
using the same 10 ROI model (bilateral temporal polar,
perirhinal, entorhinal, parahippocampal cortices and the
hippocampus without subfield segmentation) as Miller
et al. [2005]. For each alignment technique, the datasets
were first normalized to Talairach space using AFNI. For
FSL and SPM alignment, the segmented ROIs were trans-
ferred from AFNI to ANALYZE format and normalized
using nearest neighbor interpolation. All other normaliza-
tion parameters were left at the default values for the re-
spective programs. The resulting aligned ROIs from each
alignment technique were then blurred using Gaussian
kernel with s ¼ 0.5 mm. This was done in order to reduce

the error originating from misalignment on the edges of
the ROIs, effectively assigning a greater weight to the inte-
rior of the ROIs when calculating the error metric.
The error metric was calculated using MATLAB (The

MathWorks, Natik, MA) by taking the absolute difference
between a given transformed data set and a target dataset
and then normalizing by dividing by the volume of the
unblurred target. This was calculated for each of the respec-
tive alignment techniques. In order to produce an unbiased
estimate of this error, each subject in turn served as the tar-
get against which all other subjects were compared. The
mean of these scores was taken as the error metric for each
of the alignment techniques.

Low-Resolution Data

To validate the present method of high-resolution fMRI
scanning, we compared our results with those obtained by
Law et al. [2005] and Flanery and Stark [submitted] using
the same behavioral paradigm and an equal number of par-
ticipants (19). Participants and data analysis methods are as
described in Law et al. [2005], with the exception that fMRI
data were converted to percent signal change from the com-
mon baseline task in order to facilitate direct comparison
between the two experimental conditions.

RESULTS

Behavioral Performance

Behavioral performance was similar to that observed by
Law et al. [2005]. Across participants, the mean number of
new stimuli learned per scan run was 6.20 (SEM 0.38; range
3–8.8).

TABLE I. Mean error score (SEM) by medial temporal lobe anatomical region of interest for

each alignment technique

Anatomical ROI

Alignment technique

Talairach FSL SPM LDDMM1 LDDMM2

CA1 R 1.31 (0.09) 1.19 (0.08) 1.21 (0.08) 0.66 (0.04) 0.50 (0.03)
L 1.31 (0.10) 1.24 (0.09) 1.25 (0.09) 0.67 (0.04) 0.51 (0.03)

CA3 R 1.44 (0.11) 1.32 (0.19) 1.29 (0.09) 0.71 (0.05) 0.59 (0.04)
L 1.48 (0.12) 1.41 (0.10) 1.45 (0.11) 0.74 (0.05) 0.64 (0.04)

Subiculum R 1.47 (0.11) 1.36 (0.10) 1.40 (0.10) 0.79 (0.06) 0.75 (0.05)
L 1.50 (0.11) 1.48 (0.11) 1.51 (0.11) 0.82 (0.06) 0.87 (0.05)

Temporalpolar Ctx. R 1.16 (0.09) 1.18 (0.10) 1.09 (0.08) 0.53 (0.05) 0.34 (0.02)
L 1.24 (0.09) 1.27 (0.09) 1.17 (0.08) 0.55 (0.05) 0.35 (0.02)

Perirhinal Ctx. R 1.36 (0.11) 1.25 (0.09) 1.25 (0.10) 0.70 (0.05) 0.76 (0.05)
L 1.28 (0.10) 1.17 (0.08) 1.17 (0.08) 0.67 (0.05) 0.78 (0.05)

Entorhinal Ctx. R 1.33 (0.09) 1.36 (0.09) 1.27 (0.09) 0.72 (0.05) 0.65 (0.04)
L 1.31 (0.08) 1.32 (0.09) 1.25 (0.08) 0.72 (0.05) 0.61 (0.04)

Parahippocampal Ctx. R 1.18 (0.09) 1.06 (0.08) 1.03 (0.08) 0.69 (0.05) 0.75 (0.07)
L 1.34 (0.14) 1.21 (0.12) 1.25 (0.12) 0.70 (0.05) 0.78 (0.07)
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Cross-Participant Alignment

Table I presents the mean alignment error for each of the
anatomically defined ROIs after alignment with each of the
alignment techniques. A two-way ANOVA revealed signifi-
cant main effects of ROI and alignment method, as well as a
significant ROI by alignment method interaction (all P <
0.001). Figure 3 presents the mean alignment error for the
hippocampus averaged across all subjects for each of the
registration techniques with each subject serving as target
compared with all the other subjects. A one-way ANOVA
revealed a significant effect of alignment technique [F (4,76) ¼
195.24, P < 0.00001]. Post hoc t-tests revealed that alignment
with LDDMM to the fully defined model (including hippo-
campal subregions) resulted in significantly lower errors
than the other techniques [all t(19) > 9, P < 0.001]. Error fol-
lowing normalization with FSL and SPM2 were similar to
each other (t < 1) and error following the AFNI Talairach
transformation was somewhat greater than FSL or SPM2 (all
P < 0.002).

Functional Data Replication

Using the same behavioral paradigm as in the present
study, Law et al. [2005] and Flanery and Stark [submitted]
found that activity in the MTL increased in a linear fashion
from memory strength 1 through memory strength 5 and

the reference condition. The greatest activity difference
between conditions was between memory strengths 1 and 5.
We therefore performed t-tests contrasting memory
strengths 1 and 5 for the low- and high-resolution data. For
both datasets, we created functionally defined regions of in-
terest (ROIs) by setting a voxel-wise threshold of P ¼ 0.03
for the t-test and a spatial extent threshold resulting in an
overall probability of P ¼ 0.05 as determined by Monte Carlo
simulations (AFNI’s AlphaSim program) for the MTL vol-
ume (29,578 mm3 and 29,484 mm3 for the low and high-reso-
lution data respectively). Finally, the ROIs were masked to
exclude non-MTL voxels by blurring the model MTL used
for the LDDMM alignment for the respective datasets with a
3-mm FWHM Gaussian blur. Thus, what are reported below
as significant regions of activation have a P-value of less
than 0.05.
In the low-resolution dataset, this analysis yields two

large ROIs encompassing the entire rostral-caudal extent of
the hippocampus bilaterally (Fig. 4A). Consistent with the
findings of [Hyde et al., 2001], the activations in the high-
resolution dataset are much smaller than in the low-resolution
data (e.g., 243 mm3 vs. 906 mm3 in the right hippocampus).
In the high-resolution MTL data, there are two significant
regions of activation in the left hippocampus, and a third in
the anterior right hippocampus (Fig. 3A). To localize the
regions of activation within the MTL, the percent overlap
between the functionally-defined ROIs and the modal model
was calculated. The anterior left hippocampal ROI was 32
voxels, 6.25% of which overlapped with CA3. The rest fell
just outside the area defined as MTL. In the posterior left
hippocampal activation, 40.91% fell within CA3, while
59.09% fell in CA1. On the right, the hippocampal activation
fell within CA3 (51.4%), CA1 (11.11%), and subiculum
(2.78%). The remaining 34.72% fell outside regions defined
as MTL in the model. In both hemispheres, the activity
detected in the low and high-resolution datasets overlap
considerably.
We predicted based on the results of Hyde et al. [2001]

that the percent signal change would be greater at high reso-
lution than at low resolution. To test this hypothesis, we
indexed signal change related to learning by contrasting ac-
tivity between memory strengths 1 and 5 for the similar
regions in the high versus low resolution data sets (Fig. 3B).
The mean percent signal change in the left hippocampal ROI
was significantly greater in the high-resolution dataset in
both the anterior ROI [mean ¼ 1.80, t(36) ¼ 3.17, P < 0.01]
and the posterior ROI [mean ¼ 1.37, t(36) ¼ 2.51, P < 0.05]
separately compared with the low resolution ROI in the left
hippocampus (mean ¼ 0.53). In the right hippocampus, the
mean percent signal change was again greater in the high-re-
solution dataset compared with the low-resolution data,
with a mean of 1.48 and 0.55 in the high- and low-resolution
datasets, respectively [t(36) ¼ 3.69, P < 0.001]. Thus the
high-resolution data replicates the low-resolution data in
terms of the overall pattern of activation, however the acti-
vations observed were more specific and showed a greater
percent signal change.

Figure 3.

Cross-participant hippocampal alignment error. Error rates for

each of the alignment techniques were defined as the absolute

difference between each mapped subject and every other subject

as a target subject, normalized by the target subject volume (see

text). LDDMM 1 indicates ROI-LDDMM alignment to a model

that lacked segmentation of the hippocampal subregions. The

model in LDDMM 2 included the subregional segmentation.
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DISCUSSION

Theories of MTL function in declarative memory com-
monly posit a functional distinction between the hippocam-
pus and the adjacent cortical areas. Furthermore, electro-
physiological data and computational models of the hippo-
campus suggest functional distinctions within subregions of
the hippocampus. However, there are several challenges to
using fMRI to resolve activity within the different structures
of the MTL, and especially within subregions of the hippo-
campus. The first challenge is that the standard fMRI resolu-
tion is too coarse to localize activity at the level required. A
second challenge is that cross-participant alignment of the

functional data must be precise in order to take advantage of
a group-level analysis. This experiment used a combination
of approaches to address these issues.
First, we demonstrated that the ROI-LDDMM alignment

technique is reliably more precise at aligning the hippo-
campus in a group of subjects than other commonly used
normalization techniques. When testing hypotheses about
specific brain regions, such as the MTL, it is advantageous
to restrict investigation and analysis to that brain region.
We employ this approach by only collecting fMRI data
from the MTL and basing the alignment on anatomical def-
initions of the MTL structures themselves (the ROI-AL
approach, instantiated here as ROI-LDDMM). Presumably,
other automated normalization procedures, such as those
employed by FSL and SPM2, would also benefit from
restricting their venue to a local area (such as the MTL).
This is a possible avenue for further research, but while
such an approach will likely improve these basic tech-
niques, they will likely not achieve the accuracy achieved
here with this alone. One strength of the ROI-AL approach
is to restrict the alignment to a smaller volume, but a sec-
ond is to use an error metric during alignment that is based
on the overlap of 3D segmentations of regions. Typical
approaches use the difference in greyscale intensity across
images and can easily align one participant’s entorhinal
cortex (grey matter) atop another participant’s perirhinal
cortex (nearby grey matter). Finally, the LDDMM align-
ment algorithm provides greater flexibility in alignment
and higher accuracy than other algorithms commonly used
in neuroimaging research [Beg et al., 2005]. This increase
in accuracy also increases the confidence with which a
given activation may be localized to specific structures,
such as the subregions of the hippocampus both by the
overall reduction in alignment error and by the explicit use
of 3D anatomical segmentations of the specific structures.
This latter point allows one to interrogate a voxel’s location
and anatomical label (e.g. right CA1 or left perirhinal cor-
tex) both in the template (representing some central tend-
ency across individual brains) and in each individual’s
brain segmentation.
We also demonstrated that the high-resolution functional

data replicates the memory strength effects observed at
lower resolution. Furthermore, the pattern of activation
observed in the high-resolution data had a similar spatial
distribution (bilateral hippocampus), but covered a much
smaller area. This may be due to less partial sampling of
activated regions in the high-resolution data. This is sup-
ported by the fact that we observed significantly greater per-
cent signal change in the high-resolution ROIs. In conclu-
sion, it appears that we can successfully perform high-reso-
lution fMRI in the MTL.
In conclusion, we present here a combination of high-reso-

lution fMRI and cross-participant alignment techniques that
allow us to resolve fine-scale activity within the MTL using
a group-level analysis. Although the current approach does
not allow us to measure activity in other brain regions out-
side the MTL, the techniques employed here are generaliz-

Figure 4.

A: Significant regions of functional activation in the low- and high-

resolution datasets. Region of interest color corresponds to the

mean percent signal change. B: Example pattern of activation in

the left hippocampus (anterior region in the high-resolution data-

set). Memory strengths 1–5 (i.e. Str1–5) were estimated from the

binary performance on each trial (see text). High and low-resolu-

tion functional data show a similar pattern of activation with

greater percent signal change seen in the smaller voxels.
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able and not restricted to use with just the MTL. These same
techniques can be applied to any structure or collection of
structures that can be anatomically segmented.
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